	Gradient de- scent	Subgrad method	Prox grad de- scent	Stochastic grad descent
Criterion	smooth f	any f	$\begin{array}{ll} smooth \\ + & simple, \\ f = g + h \end{array}$	$\begin{array}{ll} smooth \\ + & simple, \\ f = g + h \end{array}$
Constraints	projection onto con- straint set	projection onto con- straint set	constrained prox operator	projection onto con- straint set
Opti pa- rameters	fixed step size $(t \le 1/L)$ or line search	diminishing step sizes	fixed step size $(t \le 1/L)$ or line search	fixed or di- minishing step sizes, mini-batch size
Iteration cost	cheap (com- pute gradient)	cheap (com- pute subgra- dient)	moderately cheap (evalu- ate prox)	very cheap (compute stochastic gradient)
Rate	$O(1/\epsilon)$ (acceleration: $O(1/\sqrt{\epsilon})$, strong convexity: $O(\log(1/\epsilon))$)	$O(1/\epsilon^2)$	$O(1/\epsilon)$ (acceleration: $O(1/\sqrt{\epsilon})$, strong convexity: $O(\log(1/\epsilon))$)	$O(1/\epsilon^2)$, but practically converges rapidly at the start

	Newton	Barrier	Primal-dual	Quasi-
		method	interior-point	Newton
Criterion	twice	twice	twice	twice
	smooth f	smooth f	smooth f	smooth f
Constraints	equality con-	equality, twice	equality, twice	unconstrained
	straints	smooth h_i	smooth h_i	
		(inequality	(inequality	
		constraints)	constraints)	
Opti pa-	pure step size	inner: pure	line search for	line search
rameters	(t=1) or line	step size or	step size, bar-	
	search	line search;	rier parameter	
		outer: barrier		
		parameter		
Iteration	moderate to	expensive to	moderate to	moderately
cost	expensive	very expen-	expensive	cheap (com-
	(compute	sive (one iter	one iter	pute gradi-
	Hessian and	solves one	performs one	ents, inner
	solve linear	smoothed	Newton step)	products;
	system)	problem)		no matrix
				inversion)
Rate	$O(\log\log(1/\epsilon))$		$O(\log(1/\epsilon))$	local superlin-
	(local rate)	(also rate for		ear rate
		total Newton		
		steps)		

	Prox Newton	Coordinate	ADMM	Frank-Wolfe
		descent		
Criterion	twice smooth	$smooth \qquad + \qquad$	block separa-	$smooth\ f$
	+ simple, $f = $	separable,	ble, $f(x,z) =$	
	g+h	f = g + h	g(x) + h(z)	
Constraints	constrained	separable con-	always have	any compact
	H-prox	straints	equality con-	constraint set
			straints; for	for which we
			inequalities:	know linear
			constrained	minimization
			prox	oracle
Opti pa-	pure step size	none	augmented	default step
rameters	or line search		Lagrangian	sizes or line
			parameter	search
Iteration	expensive to	cheap to ex-	cheap to	moderately
cost	very expen-	pensive (one	expensive	cheap (one
	sive (evaluate	iteration per-	(one iteration	iteration eva-
	H-prox)	forms a full	solves g, h	lutes linear
	,	cycle or co-	subproblems,	minimization
		ordinate mini-	makes a dual	oracle)
		mizations)	step)	,
Rate	$O(\log\log(1/\epsilon))$	same as prox	same as prox	same as prox
	(local rate)	grad, but can	grad, similar	grad, but can
		be faster in	in practice	be slower in
		practice		practice