
Convexity I: Sets and Functions

Ryan Tibshirani
Convex Optimization 10-725

See supplements for reviews of

• basic real analysis

• basic multivariate calculus

• basic linear algebra



Last time: why convexity?

Why convexity? Simply put: because we can broadly understand
and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of
the form

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r

where f and gi, i = 1, . . . ,m are all convex, and
hj , j = 1, . . . , r are affine. Special property:
any local minimizer is a global minimizer
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Outline

Today:

• Convex sets

• Examples

• Key properties

• Operations preserving convexity

• Same, for convex functions
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Convex sets

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1

In words, line segment joining any two elements lies entirely in set
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k, and
∑k

i=1 θi = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

• Trivial ones: empty set, point, line

• Norm ball: {x : ‖x‖ ≤ r}, for given norm ‖ · ‖, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx ≤ b}

• Affine space: {x : Ax = b}, for given A, b
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• Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted
componentwise. Note: the set {x : Ax ≤ b, Cx = d} is also a
polyhedron (why?)32 2 Convex sets

a1 a2

a3

a4

a5

P

Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax ≼ b, Cx = d} (2.6)

for (2.5), where

A =

⎡
⎢⎣

aT
1
...

aT
m

⎤
⎥⎦ , C =

⎡
⎢⎣

cT
1
...

cT
p

⎤
⎥⎦ ,

and the symbol ≼ denotes vector inequality or componentwise inequality in Rm:
u ≼ v means ui ≤ vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n} = {x ∈ Rn | x ≽ 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x ∈ R | x ≥ 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk ∈ Rn are affinely independent, which means v1 − v0, . . . , vk − v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {θ0v0 + · · · + θkvk | θ ≽ 0, 1T θ = 1}, (2.7)

• Simplex: special case of polyhedra, given by
conv{x0, . . . , xk}, where these points are affinely independent.
The canonical example is the probability simplex,

conv{e1, . . . , en} = {w : w ≥ 0, 1Tw = 1}
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Cones

Cone: C ⊆ Rn such that

x ∈ C =⇒ tx ∈ C for all t ≥ 0

Convex cone: cone that is also convex, i.e.,

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

Conic combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k. Conic hull collects all conic combinations

7



Examples of convex cones

• Norm cone: {(x, t) : ‖x‖ ≤ t}, for a norm ‖ · ‖. Under the `2
norm ‖ · ‖2, called second-order cone

• Normal cone: given any set C and point x ∈ C, we can define

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

●

●

●

●

This is always a convex cone,
regardless of C

• Positive semidefinite cone: Sn+ = {X ∈ Sn : X � 0}, where
X � 0 means that X is positive semidefinite (and Sn is the
set of n× n symmetric matrices)
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Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aT x ≥ b aT x ≤ b

Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The affine function aT x − b is nonpositive on C and nonnegative
on D.

Formally: if C,D are nonempty convex sets with C ∩D = ∅,
then there exists a, b such that

C ⊆ {x : aTx ≤ b}
D ⊆ {x : aTx ≥ b}
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• Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

●

Formally: if C is a nonempty convex set, and x0 ∈ bd(C),
then there exists a such that

C ⊆ {x : aTx ≤ aTx0}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV
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Operations preserving convexity

• Intersection: the intersection of convex sets is convex

• Scaling and translation: if C is convex, then

aC + b = {ax+ b : x ∈ C}

is convex for any a, b

• Affine images and preimages: if f(x) = Ax+ b and C is
convex then

f(C) = {f(x) : x ∈ C}
is convex, and if D is convex then

f−1(D) = {x : f(x) ∈ D}

is convex
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Example: linear matrix inequality solution set

Given A1, . . . , Ak, B ∈ Sn, a linear matrix inequality is of the form

x1A1 + x2A2 + · · ·+ xkAk � B

for a variable x ∈ Rk. Let’s prove the set C of points x that satisfy
the above inequality is convex

Approach 1: directly verify that x, y ∈ C ⇒ tx+ (1− t)y ∈ C.
This follows by checking that, for any v,

vT
(
B −

k∑

i=1

(txi + (1− t)yi)Ai

)
v ≥ 0

Approach 2: let f : Rk → Sn, f(x) = B −∑k
i=1 xiAi. Note that

C = f−1(Sn+), affine preimage of convex set
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More operations preserving convexity

• Perspective images and preimages: the perspective function is
P : Rn × R++ → Rn (where R++ denotes positive reals),

P (x, z) = x/z

for z > 0. If C ⊆ dom(P ) is convex then so is P (C), and if
D is convex then so is P−1(D)

• Linear-fractional images and preimages: the perspective map
composed with an affine function,

f(x) =
Ax+ b

cTx+ d

is called a linear-fractional function, defined on cTx+ d > 0.
If C ⊆ dom(f) is convex then so if f(C), and if D is convex
then so is f−1(D)
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Example: conditional probability set

Let U, V be random variables over {1, . . . , n} and {1, . . . ,m}. Let
C ⊆ Rnm be a set of joint distributions for U, V , i.e., each p ∈ C
defines joint probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e.,
each q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =
{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}
= f(C)

where f is a linear-fractional function, hence D is convex
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Convex functions

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave ⇐⇒ −f convex
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Important modifiers:

• Strictly convex: f
(
tx+ (1− t)y

)
< tf(x) + (1− t)f(y) for

x 6= y and 0 < t < 1. In words, f is convex and has greater
curvature than a linear function

• Strongly convex with parameter m > 0: f − m
2 ‖x‖22 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex ⇒ strictly convex ⇒ convex

(Analogously for concave functions)
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Examples of convex functions

• Univariate functions:

I Exponential function: eax is convex for any a over R
I Power function: xa is convex for a ≥ 1 or a ≤ 0 over R+

(nonnegative reals)
I Power function: xa is concave for 0 ≤ a ≤ 1 over R+

I Logarithmic function: log x is concave over R++

• Affine function: aTx+ b is both convex and concave

• Quadratic function: 1
2x

TQx+ bTx+ c is convex provided that
Q � 0 (positive semidefinite)

• Least squares loss: ‖y −Ax‖22 is always convex (since ATA is
always positive semidefinite)
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• Norm: ‖x‖ is convex for any norm; e.g., `p norms,

‖x‖p =
(

n∑

i=1

|xi|p
)1/p

for p ≥ 1, ‖x‖∞ = max
i=1,...,n

|xi|

and also operator (spectral) and trace (nuclear) norms,

‖X‖op = σ1(X), ‖X‖tr =
r∑

i=1

σr(X)

where σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular values of
the matrix X
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• Indicator function: if C is convex, then its indicator function

IC(x) =

{
0 x ∈ C
∞ x /∈ C

is convex

• Support function: for any set C (convex or not), its support
function

I∗C(x) = max
y∈C

xT y

is convex

• Max function: f(x) = max{x1, . . . , xn} is convex
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Key properties of convex functions

• A function is convex if and only if its restriction to any line is
convex

• Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

{x ∈ dom(f) : f(x) ≤ t}

are convex, for all t ∈ R. The converse is not true
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• First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex
function ∇f(x) = 0 ⇐⇒ x minimizes f

• Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and ∇2f(x) � 0
for all x ∈ dom(f)

• Jensen’s inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) ≤ E[f(X)]
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Operations preserving convexity

• Nonnegative linear combination: f1, . . . , fm convex implies
a1f1 + · · ·+ amfm convex for any a1, . . . , am ≥ 0

• Pointwise maximization: if fs is convex for any s ∈ S, then
f(x) = maxs∈S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

• Partial minimization: if g(x, y) is convex in x, y, and C is
convex, then f(x) = miny∈C g(x, y) is convex
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Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to
C under an arbitrary norm ‖ · ‖:

f(x) = max
y∈C

‖x− y‖

Let’s check convexity: fy(x) = ‖x− y‖ is convex in x for any fixed
y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

f(x) = min
y∈C

‖x− y‖

Let’s check convexity: g(x, y) = ‖x− y‖ is convex in x, y jointly,
and C is assumed convex, so apply partial minimization rule
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More operations preserving convexity

• Affine composition: if f is convex, then g(x) = f(Ax+ b) is
convex

• General composition: suppose f = h ◦ g, where g : Rn → R,
h : R→ R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing, g is convex
I f is convex if h is convex and nonincreasing, g is concave
I f is concave if h is concave and nondecreasing, g concave
I f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)
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• Vector composition: suppose that

f(x) = h
(
g(x)

)
= h

(
g1(x), . . . , gk(x)

)

where g : Rn → Rk, h : Rk → R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing in each
argument, g is convex

I f is convex if h is convex and nonincreasing in each
argument, g is concave

I f is concave if h is concave and nondecreasing in each
argument, g is concave

I f is concave if h is concave and nonincreasing in each
argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(
∑k

i=1 e
aTi x+bi), for fixed ai, bi,

i = 1, . . . , k. Often called “soft max”, as it smoothly approximates
maxi=1,...k (aTi x+ bi)

How to show convexity? First, note it suffices to prove convexity of
f(x) = log(

∑n
i=1 e

xi) (affine composition rule)

Now use second-order characterization. Calculate

∇if(x) =
exi

∑n
`=1 e

x`

∇2
ijf(x) =

exi

∑n
`=1 e

x`
1{i = j} − exiexj

(
∑n

`=1 e
x`)2

Write ∇2f(x) = diag(z)− zzT , where zi = exi/(
∑n

`=1 e
x`). This

matrix is diagonally dominant, hence positive semidefinite
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