Convexity I: Sets and Functions

Ryan Tibshirani Convex Optimization 10-725

See supplements for reviews of

- basic real analysis
- basic multivariate calculus
- basic linear algebra

Last time: why convexity?

Why convexity? Simply put: because we can broadly understand and solve convex optimization problems

Nonconvex problems are mostly treated on a case by case basis

Reminder: a convex optimization problem is of the form

$$\min_{x \in D} \qquad f(x)$$
subject to $g_i(x) \le 0, \ i = 1, \dots, m$
 $h_j(x) = 0, \ j = 1, \dots, r$

where f and g_i , i = 1, ..., m are all convex, and h_j , j = 1, ..., r are affine. Special property: any local minimizer is a global minimizer

Outline

Today:

- Convex sets
- Examples
- Key properties
- Operations preserving convexity
- Same, for convex functions

Convex sets

Convex set: $C \subseteq \mathbb{R}^n$ such that

$$x, y \in C \implies tx + (1-t)y \in C \text{ for all } 0 \leq t \leq 1$$

In words, line segment joining any two elements lies entirely in set

Convex combination of $x_1, \ldots, x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \dots + \theta_k x_k$$

with $\theta_i \ge 0$, i = 1, ..., k, and $\sum_{i=1}^k \theta_i = 1$. Convex hull of a set C, $\operatorname{conv}(C)$, is all convex combinations of elements. Always convex

Examples of convex sets

- Trivial ones: empty set, point, line
- Norm ball: $\{x : \|x\| \le r\}$, for given norm $\|\cdot\|$, radius r
- Hyperplane: $\{x : a^T x = b\}$, for given a, b
- Halfspace: $\{x : a^T x \leq b\}$
- Affine space: $\{x : Ax = b\}$, for given A, b

Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted componentwise. Note: the set {x : Ax ≤ b, Cx = d} is also a polyhedron (why?)

 Simplex: special case of polyhedra, given by conv{x₀,..., x_k}, where these points are affinely independent. The canonical example is the probability simplex,

$$\operatorname{conv}\{e_1,\ldots,e_n\} = \{w : w \ge 0, \ 1^T w = 1\}$$

Cones

Cone: $C \subseteq \mathbb{R}^n$ such that

$$x \in C \implies tx \in C \text{ for all } t \geq 0$$

Convex cone: cone that is also convex, i.e.,

 $x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \text{ for all } t_1, t_2 \geq 0$

Conic combination of $x_1, \ldots, x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \cdots + \theta_k x_k$$

with $\theta_i \ge 0$, $i = 1, \ldots, k$. Conic hull collects all conic combinations

Examples of convex cones

- Norm cone: $\{(x,t) : ||x|| \le t\}$, for a norm $||\cdot||$. Under the ℓ_2 norm $||\cdot||_2$, called second-order cone
- Normal cone: given any set C and point $x \in C$, we can define

$$\mathcal{N}_C(x) = \{g : g^T x \ge g^T y, \text{ for all } y \in C\}$$

This is always a convex cone, regardless of C

Positive semidefinite cone: Sⁿ₊ = {X ∈ Sⁿ : X ≥ 0}, where X ≥ 0 means that X is positive semidefinite (and Sⁿ is the set of n × n symmetric matrices)

Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them

Formally: if C, D are nonempty convex sets with $C \cap D = \emptyset$, then there exists a, b such that

$$C \subseteq \{x : a^T x \le b\}$$
$$D \subseteq \{x : a^T x \ge b\}$$

• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it

Formally: if C is a nonempty convex set, and $x_0 \in bd(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

Both of the above theorems (separating and supporting hyperplane theorems) have partial converses; see Section 2.5 of BV

Operations preserving convexity

- Intersection: the intersection of convex sets is convex
- Scaling and translation: if C is convex, then

$$aC + b = \{ax + b : x \in C\}$$

is convex for any a, b

• Affine images and preimages: if f(x) = Ax + b and C is convex then

$$f(C) = \{f(x) : x \in C\}$$

is convex, and if D is convex then

$$f^{-1}(D) = \{x : f(x) \in D\}$$

is convex

Example: linear matrix inequality solution set

Given $A_1, \ldots, A_k, B \in \mathbb{S}^n$, a linear matrix inequality is of the form

$$x_1A_1 + x_2A_2 + \dots + x_kA_k \preceq B$$

for a variable $x \in \mathbb{R}^k$. Let's prove the set C of points x that satisfy the above inequality is convex

Approach 1: directly verify that $x, y \in C \Rightarrow tx + (1-t)y \in C$. This follows by checking that, for any v,

$$v^T \Big(B - \sum_{i=1}^k (tx_i + (1-t)y_i)A_i \Big) v \ge 0$$

Approach 2: let $f : \mathbb{R}^k \to \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$. Note that $C = f^{-1}(\mathbb{S}^n_+)$, affine preimage of convex set

More operations preserving convexity

• Perspective images and preimages: the perspective function is $P : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals),

$$P(x,z) = x/z$$

for z>0. If $C\subseteq {\rm dom}(P)$ is convex then so is P(C), and if D is convex then so is $P^{-1}(D)$

• Linear-fractional images and preimages: the perspective map composed with an affine function,

$$f(x) = \frac{Ax+b}{c^T x + d}$$

is called a linear-fractional function, defined on $c^T x + d > 0$. If $C \subseteq \text{dom}(f)$ is convex then so if f(C), and if D is convex then so is $f^{-1}(D)$

Example: conditional probability set

Let U, V be random variables over $\{1, \ldots, n\}$ and $\{1, \ldots, m\}$. Let $C \subseteq \mathbb{R}^{nm}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$p_{ij} = \mathbb{P}(U = i, V = j)$$

Let $D\subseteq \mathbb{R}^{nm}$ contain corresponding conditional distributions, i.e., each $q\in D$ defines

$$q_{ij} = \mathbb{P}(U = i | V = j)$$

Assume C is convex. Let's prove that D is convex. Write

$$D = \left\{ q \in \mathbb{R}^{nm} : q_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}, \text{ for some } p \in C \right\} = f(C)$$

where f is a linear-fractional function, hence \boldsymbol{D} is convex

Convex functions

Convex function: $f : \mathbb{R}^n \to \mathbb{R}$ such that $dom(f) \subseteq \mathbb{R}^n$ convex, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$
 for $0 \le t \le 1$

and all $x, y \in \operatorname{dom}(f)$

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

$$f \text{ concave } \iff -f \text{ convex}$$

Important modifiers:

- Strictly convex: f(tx + (1-t)y) < tf(x) + (1-t)f(y) for $x \neq y$ and 0 < t < 1. In words, f is convex and has greater curvature than a linear function
- Strongly convex with parameter m > 0: $f \frac{m}{2} ||x||_2^2$ is convex. In words, f is at least as convex as a quadratic function

Note: strongly convex \Rightarrow strictly convex \Rightarrow convex

(Analogously for concave functions)

Examples of convex functions

- Univariate functions:
 - Exponential function: e^{ax} is convex for any a over $\mathbb R$
 - Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals)
 - Power function: x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+
 - Logarithmic function: $\log x$ is concave over \mathbb{R}_{++}
- Affine function: $a^T x + b$ is both convex and concave
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \succeq 0$ (positive semidefinite)
- Least squares loss: $||y Ax||_2^2$ is always convex (since $A^T A$ is always positive semidefinite)

• Norm: ||x|| is convex for any norm; e.g., ℓ_p norms,

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 for $p \ge 1$, $\|x\|_{\infty} = \max_{i=1,\dots,n} |x_i|$

and also operator (spectral) and trace (nuclear) norms,

$$||X||_{\text{op}} = \sigma_1(X), \quad ||X||_{\text{tr}} = \sum_{i=1}^r \sigma_r(X)$$

where $\sigma_1(X) \geq \ldots \geq \sigma_r(X) \geq 0$ are the singular values of the matrix X

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

is convex

• Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

• Max function: $f(x) = \max\{x_1, \dots, x_n\}$ is convex

Key properties of convex functions

- A function is convex if and only if its restriction to any line is convex
- Epigraph characterization: a function f is convex if and only if its epigraph

$$epi(f) = \{(x,t) \in dom(f) \times \mathbb{R} : f(x) \le t\}$$

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

 $\{x \in \operatorname{dom}(f) : f(x) \le t\}$

are convex, for all $t \in \mathbb{R}$. The converse is not true

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \text{dom}(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \iff x$ minimizes f

- Second-order characterization: if f is twice differentiable, then f is convex if and only if $\operatorname{dom}(f)$ is convex, and $\nabla^2 f(x) \succeq 0$ for all $x \in \operatorname{dom}(f)$
- Jensen's inequality: if f is convex, and X is a random variable supported on dom(f), then f(E[X]) ≤ E[f(X)]

Operations preserving convexity

- Nonnegative linear combination: f_1, \ldots, f_m convex implies $a_1f_1 + \cdots + a_mf_m$ convex for any $a_1, \ldots, a_m \ge 0$
- Pointwise maximization: if f_s is convex for any s ∈ S, then f(x) = max_{s∈S} f_s(x) is convex. Note that the set S here (number of functions f_s) can be infinite
- Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = min_{y∈C} g(x, y) is convex

Example: distances to a set

Let C be an arbitrary set, and consider the maximum distance to C under an arbitrary norm $\|\cdot\|$:

$$f(x) = \max_{y \in C} \|x - y\|$$

Let's check convexity: $f_y(x) = ||x - y||$ is convex in x for any fixed y, so by pointwise maximization rule, f is convex

Now let C be convex, and consider the minimum distance to C:

$$f(x) = \min_{y \in C} \|x - y\|$$

Let's check convexity: g(x,y) = ||x - y|| is convex in x, y jointly, and C is assumed convex, so apply partial minimization rule

More operations preserving convexity

- Affine composition: if f is convex, then $g(\boldsymbol{x}) = f(A\boldsymbol{x} + \boldsymbol{b})$ is convex
- General composition: suppose $f = h \circ g$, where $g : \mathbb{R}^n \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$, $f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - f is convex if h is convex and nondecreasing, g is convex
 - f is convex if h is convex and nonincreasing, g is concave
 - $\blacktriangleright\ f$ is concave if h is concave and nondecreasing, g concave
 - \blacktriangleright f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• Vector composition: suppose that

$$f(x) = h(g(x)) = h(g_1(x), \dots, g_k(x))$$

where $g: \mathbb{R}^n \to \mathbb{R}^k$, $h: \mathbb{R}^k \to \mathbb{R}$, $f: \mathbb{R}^n \to \mathbb{R}$. Then:

- ▶ f is convex if h is convex and nondecreasing in each argument, g is convex
- ▶ f is convex if h is convex and nonincreasing in each argument, g is concave
- ► f is concave if h is concave and nondecreasing in each argument, g is concave
- ▶ f is concave if h is concave and nonincreasing in each argument, g is convex

Example: log-sum-exp function

Log-sum-exp function: $g(x) = \log(\sum_{i=1}^{k} e^{a_i^T x + b_i})$, for fixed a_i, b_i , $i = 1, \ldots, k$. Often called "soft max", as it smoothly approximates $\max_{i=1,\ldots,k} (a_i^T x + b_i)$

How to show convexity? First, note it suffices to prove convexity of $f(x)=\log(\sum_{i=1}^n e^{x_i})$ (affine composition rule)

Now use second-order characterization. Calculate

$$\nabla_i f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}}$$
$$\nabla_{ij}^2 f(x) = \frac{e^{x_i}}{\sum_{\ell=1}^n e^{x_\ell}} 1\{i=j\} - \frac{e^{x_i} e^{x_j}}{(\sum_{\ell=1}^n e^{x_\ell})^2}$$

Write $\nabla^2 f(x) = \text{diag}(z) - zz^T$, where $z_i = e^{x_i}/(\sum_{\ell=1}^n e^{x_\ell})$. This matrix is diagonally dominant, hence positive semidefinite

References and further reading

- S. Boyd and L. Vandenberghe (2004), "Convex optimization", Chapters 2 and 3
- J.P. Hiriart-Urruty and C. Lemarechal (1993), "Fundamentals of convex analysis", Chapters A and B
- R. T. Rockafellar (1970), "Convex analysis", Chapters 1-10,