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Last time: numerical linear algebra primer

In Rn, rough flop counts for basic operations are as follows

• Vector-vector operations: n flops

• Matrix-vector multiplication: n2 flops

• Matrix-matrix multiplication: n3 flops

• Linear system solve: n3 flops

Operations with banded or sparse matrices are much cheaper

Two classes of approaches for linear system solvers:

• Direct: QR decomposition, Cholesky decomposition

• Indirect: Jacobi, Gauss-Seidl, gradient descent, conjugate
gradient

Rough rule of thumb: if problem fits easily in memory, go direct,
else go indirect
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Outline

Today:

• Coordinate descent

• Examples

• Implementation tricks

• Graphical lasso

• Screening rules
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Coordinatewise optimality

We’ve seen some pretty sophisticated methods thus far

We now focus on a very simple technique that can be surprisingly
efficient, scalable: coordinate descent, or more appropriately called
coordinatewise minimization

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, then have
we found a global minimizer?

That is, does f(x+ δei) ≥ f(x) for all δ, i ⇒ f(x) = minz f(z)?

(Here ei = (0, . . . , 1, . . . , 0) ∈ Rn is the ith standard basis vector)
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A: Yes! Proof:

0 = ∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)

Q: Same question, but now for f convex, and not differentiable?
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A: No! Look at the above counterexample

Q: Same, now f(x) = g(x) +
∑n

i=1 hi(xi), with g convex, smooth,
and each hi convex? (Here the nonsmooth part is called separable)
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A: Yes! Proof: using convexity of g and subgradient optimality

f(y)− f(x) = g(x)− g(y) +

n∑
i=1

[hi(yi)− hi(xi)]

≥
n∑
i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)]︸ ︷︷ ︸
≥0

≥ 0
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Coordinate descent

This suggests that for the problem

min
x

f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable
and each hi convex, we can use coordinate descent: let x(0) ∈ Rn,
and repeat

x
(k)
i = argmin

xi
f
(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . .

Important note: we always use most recent information possible
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Tseng (2001) showed that for such f (provided f is continuous on
compact set {x : f(x) ≤ f(x(0))} and f attains its minimum), any
limit point of x(k), k = 1, 2, 3, . . . is a minimizer of f1

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . , n}
• Can everywhere replace individual coordinates with blocks of

coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

• The analogy for solving linear systems: Gauss-Seidel versus
Jacobi method

1Using basic real analysis, we know x(k) has subsequence converging to x?

(Bolzano-Weierstrass), and f(x(k)) converges to f? (monotone convergence)
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Example: linear regression

Given y ∈ Rn, and X ∈ Rn×p with columns X1, . . . , Xp, consider
the linear regression problem:

min
β

1

2
‖y −Xβ‖22

Minimizing over βi, with all βj , j 6= i fixed:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y)

i.e., we take

βi =
XT
i (y −X−iβ−i)

XT
i Xi

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . ..
Note that this is exactly Gauss-Seidl for the system XTXβ = XT y
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Coordinate descent vs gradient descent for linear regression: 100
random instances with n = 100, p = 20
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Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever

• Gradient descent: β ← β + tXT (y −Xβ), costs O(np) flops

• Coordinate descent, one coordinate update:

βi ←
XT
i (y −X−iβ−i)

XT
i Xi

=
XT
i r

‖Xi‖22
+ βi

where r = y −Xβ
• Each coordinate costs O(n) flops: O(n) to update r, O(n) to

compute XT
i r

• One cycle of coordinate descent costs O(np) operations, same
as gradient descent
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Example: lasso regression

Consider the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Note that nonsmooth part here is separable: ‖β‖1 =
∑p

i=1 |βi|.
Minimizing over βi, with βj , j 6= i fixed:

0 = XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

where si ∈ ∂|βi|. Solution is simply given by soft-thresholding

βi = Sλ/‖Xi‖22

(
XT
i (y −X−iβ−i)

XT
i Xi

)
Repeat this for i = 1, 2, . . . , p, 1, 2, . . .
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Coordinate descent vs proximal gradient for lasso regression: 100
random instances with n = 200, p = 50 (all methods cost O(np)
per iter)
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Example: box-constrained QP

Given b ∈ Rn, Q ∈ Sn+, consider a box-constrained QP:

min
x

1

2
xTQx+ bTx subject to l ≤ x ≤ u

Fits into our framework, as I{l ≤ x ≤ u} =
∑n

i=1 I{li ≤ xi ≤ ui}

Minimizing over xi with all xj , j 6= i fixed: same basic steps give

xi = T[li,ui]

(
bi −

∑
j 6=iQijxj

Qii

)
where T[li,ui] is the truncation (projection) operator onto [li, ui]:

T[li,ui](z) =


ui if z > ui

z if li ≤ z ≤ ui
li if z < li
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Example: support vector machines

A coordinate descent strategy can be applied to the SVM dual:

min
α

1

2
αT X̃X̃Tα− 1Tα subject to 0 ≤ α ≤ C1, αT y = 0

Sequential minimal optimization or SMO (Platt 1998) is basically
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily

Recall the complementary slackness conditions

αi
(
1− ξi − (X̃β)i − yiβ0

)
= 0, i = 1, . . . , n (1)

(C − αi)ξi = 0, i = 1, . . . , n (2)

where β, β0, ξ are the primal coefficients, intercept, and slacks.
Recall that β = X̃Tα, β0 is computed from (1) using any i such
that 0 < αi < C, and ξ is computed from (1), (2)
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SMO repeats the following two steps:

• Choose αi, αj that violate complementary slackness, greedily
(using heuristics)

• Minimize over αi, αj exactly, keeping all other variables fixed

Using equality constraint,
reduces to minimizing uni-
variate quadratic over an
interval (From Platt 1998)

Note this does not meet separability assumptions for convergence
from Tseng (2001), and a different treatment is required

Many further developments on coordinate descent for SVMs have
been made; e.g., a recent one is Hsiesh et al. (2008)
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Coordinate descent in statistics and ML

History in statistics/ML:

• Idea appeared in Fu (1998), and then again in Daubechies et
al. (2004), but was inexplicably ignored

• Later, three papers in 2007, especially Friedman et al. (2007),
really sparked interest in statistics and ML communities

Why is it used?

• Very simple and easy to implement

• Careful implementations can achieve state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

Examples: lasso regression, lasso GLMs (under proximal Newton),
SVMs, group lasso, graphical lasso (applied to the dual), additive
modeling, matrix completion, regression with nonconvex penalties
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Pathwise coordinate descent for lasso

Structure for pathwise coordinate descent, Friedman et al. (2009):

Outer loop (pathwise strategy):

• Compute the solution over a sequence λ1 > λ2 > · · · > λr of
tuning parameter values

• For tuning parameter value λk, initialize coordinate descent
algorithm at the computed solution for λk+1 (warm start)

Inner loop (active set strategy):

• Perform one coordinate cycle (or small number of cycles), and
record active set A of coefficients that are nonzero

• Cycle over only the coefficients in A until convergence

• Check KKT conditions over all coefficients; if not all satisfied,
add offending coefficients to A, go back one step
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Notes:

• Even when the solution is desired at only one λ, the pathwise
strategy (solving over λ1 > · · · > λr = λ) is typically much
more efficient than directly performing coordinate descent at λ

• Active set strategy takes advantage of sparsity; e.g., for large
problems, coordinate descent for lasso is much faster than it is
for ridge regression

• With these strategies in place (and a few more clever tricks),
coordinate descent can be competitve with fastest algorithms
for `1 penalized minimization problems

• Fortran implementation glmnet, linked to R, MATLAB, etc.
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Coordinate gradient descent

For a smooth function f , the iterations

x
(k)
i = x

(k−1)
i − tki · ∇if

(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . . are called coordinate gradient descent, and when
f = g + h, with g smooth and h =

∑n
i=1 hi, the iterations

x
(k)
i = proxhi,tki

(
x

(k−1)
i −tki·∇ig

(
x

(k)
1 , . . . , x

(k−1)
i , . . . , x(k−1)

n

))
,

i = 1, . . . , n

for k = 1, 2, 3, . . . are called coordinate proximal gradient descent

When g is quadratic, (proximal) coordinate gradient descent is the
same as coordinate descent under proper step sizes
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Convergence analyses

Theory for coordinate descent moves quickly. Each combination of
the following cases has (probably) been analyzed:

• Coordinate descent or (proximal) coordinate gradient descent?

• Cyclic rule, permuted cyclic, or greedy rule, randomized rule?

Roughly speaking, results are similar to those for proximal gradient
descent: under standard conditions, get standard rates

But constants differ and this matters! Much recent work is focused
on improving them

Also, it is generally believe that coordinate descent should perform
better than first-order methods (when implementable)

Some references are Beck and Tetruashvili (2013), Wright (2015),
Sun and Hong (2015), Li et al. (2016)
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Graphical lasso

Consider X ∈ Rn×p, with rows xi ∼ N(0,Σ), i = 1, . . . , n, drawn
independently. Suppose Σ is unknown. It is often reasonable (for
large p) to seek a sparse estimate of Σ−1

Why? For z ∼ N(0,Σ), normality theory tells us

Σ−1
ij = 0 ⇐⇒ zi, zj conditionally independent given z`, ` 6= i, j

Graphical lasso (Banerjee et al. 2007, Friedman et al. 2007):

min
Θ∈Sp+

− log det Θ + tr(SΘ) + λ‖Θ‖1

where S = XTX/n, and ‖Θ‖1 =
∑p

i,j=1 |Θij |. Observe that this

is a convex problem. Solution Θ̂ serves as estimate for Σ−1
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Glasso algorithm

Graphical lasso KKT conditions (stationarity):

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. Let W = Θ−1. Note Wii = Sii + λ, because
Θii > 0 at solution. Now partition:

W = Θ = S = Γ =[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

] [
S11 s12

s21 s22

] [
Γ11 γ12

γ21 γ22

]
where W11 ∈ R(p−1)×(p−1), w12 ∈ R(p−1)×1, and w21 ∈ R1×(p−1),
w22 ∈ R; same with others

Glasso algorithm (Friedman et al., 2007): solve for w12 (recall that
w22 is known), with all other columns fixed; then solve for second-
to-last column, etc., and cycle around until convergence
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Screening rules

In some problems, screening rules can be used in combination with
coordinate descent to further wittle down the active set. Screening
rules themselves have amassed a huge literature recently

Originated with El Ghaoui et al. (2010), SAFE rule for the lasso:

|XT
i y| < λ− ‖Xi‖2‖y‖2

λmax − λ
λmax

⇒ β̂i = 0, all i = 1, . . . , p

where λmax = ‖XT y‖∞ (the smallest value of λ such that β̂ = 0)

Note: this is not an if and only if statement! But it does give us a
way of eliminating features apriori, without solving the lasso

(There have been many advances in screening rules for the lasso ...
but this was the first, and one of the simplest)
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SAFE rule derivation

Why is the SAFE rule true? Construction comes from lasso dual:

max
u

g(u) subject to ‖XTu‖∞ ≤ λ

where g(u) = 1
2‖y‖

2
2 − 1

2‖y − u‖
2
2. Suppose that u0 is dual feasible

(e.g., take u0 = y · λ/λmax). Then γ = g(u0) is a lower bound on
the dual optimal value, so dual problem is equivalent to

max
u

g(u) subject to ‖XTu‖∞ ≤ λ, g(u) ≥ γ

Now let mi = max
u
|XT

i u| subject to g(u) ≥ γ, for i = 1, . . . , p.

Then

mi < λ ⇒ |XT
i û| < λ ⇒ β̂i = 0, i = 1, . . . , p

The last implication comes from the KKT conditions
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(From El Ghaoui et al. 2010)
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Another dual argument shows that

max
u

XT
i u subject to g(u) ≥ γ

= min
µ>0

−γµ+
1

µ
‖µy −Xi‖22

= ‖Xi‖2
√
‖y‖22 − 2γ −XT

i y

where the last equality comes from direct calculation

Thus mi is given the maximum of the above quantity over ±Xi,

mi = ‖Xi‖2
√
‖y‖22 − 2γ + |XT

i y|, i = 1, . . . , p

Lastly, subtitute γ = g(y · λ/λmax). Then mi < λ is precisely the
SAFE rule given on previous slide
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