
Dual Decomposition

Ryan Tibshirani
Convex Optimization 10-725

Last time: coordinate descent

Consider the problem
min
x

f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable
and each hi convex. Coordinate descent: let x(0) ∈ Rn, and repeat

x
(k)
i = argmin

xi
f
(
x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . .

• Very simple and easy to implement

• Careful implementations can achieve state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

2

Reminder: conjugate functions

Recall that given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex, then ∇f∗(y) = argmin
z

f(z)− yT z

3

Outline

Today:

• Dual ascent

• Dual decomposition

• Augmented Lagrangians

• A peak at ADMM

4

Dual first-order methods

Even if we can’t derive dual (conjugate) in closed form, we can still
use dual-based gradient or subgradient methods

Consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = −f∗(−ATu)− bTu,
note that

∂g(u) = A∂f∗(−ATu)− b

5

Dual subgradient method

Therefore, using what we know about conjugates

∂g(u) = Ax− b where x ∈ argmin
z

f(z) + uTAz

The dual subgradient method (for maximizing the dual objective)
starts with an initial dual guess u(0), and repeats for k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

Step sizes tk, k = 1, 2, 3, . . . , are chosen in standard ways

6

Dual gradient ascent

Recall that if f is strictly convex, then f∗ is differentiable, and so
this becomes dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

(Difference is that each x(k) is unique, here.) Again, step sizes tk,
k = 1, 2, 3, . . . are chosen in standard ways

Lastly, proximal gradients and acceleration can be applied as they
would usually

7

Curvature and conjugates

Assume that f is a closed and convex function. Then f is strongly
convex with parameter m ⇐⇒ ∇f∗ Lipschitz with parameter 1/m

Proof of “=⇒”: Recall, if g strongly convex with minimizer x, then

g(y) ≥ g(x) + m

2
‖y − x‖2, for all y

Hence defining xu = ∇f∗(u), xv = ∇f∗(v),

f(xv)− uTxv ≥ f(xu)− uTxu +
m

2
‖xu − xv‖22

f(xu)− vTxu ≥ f(xv)− vTxv +
m

2
‖xu − xv‖22

Adding these together, using Cauchy-Schwartz, rearranging shows
that ‖xu − xv‖2 ≤ ‖u− v‖2/m

8

Proof of “⇐=”: for simplicity, call g = f∗ and L = 1/m. As ∇g is
Lipschitz with constant L, so is gx(z) = g(z)−∇g(x)T z, hence

gx(z) ≤ gx(y) +∇gx(y)T (z − y) +
L

2
‖z − y‖22

Minimizing each side over z, and rearranging, gives

1

2L
‖∇g(x)−∇g(y)‖22 ≤ g(y)− g(x) +∇g(x)T (x− y)

Exchanging roles of x, y, and adding together, gives

1

L
‖∇g(x)−∇g(y)‖22 ≤ (∇g(x)−∇g(y))T (x− y)

Let u = ∇f(x), v = ∇g(y); then x ∈ ∂g∗(u), y ∈ ∂g∗(v), and the
above reads (x− y)T (u− v) ≥ ‖u− v‖22/L, implying the result

9

Convergence guarantees

The following results hold from combining the last fact with what
we already know about gradient descent:1

• If f is strongly convex with parameter m, then dual gradient
ascent with constant step sizes tk = m converges at sublinear
rate O(1/ε)

• If f is strongly convex with parameter m and ∇f is Lipschitz
with parameter L, then dual gradient ascent with step sizes
tk = 2/(1/m+ 1/L) converges at linear rate O(log(1/ε))

Note that this describes convergence in the dual. (Convergence in
the primal requires more assumptions)

1This is ignoring the role of A, and thus reflects the case when the singular
values of A are all close to 1. To be more precise, the step sizes here should be:
m/σmax(A)

2 (first case) and 2/(σmax(A)
2/m+ σmin(A)

2/L) (second case).
10

Dual decomposition

Consider

min
x

B∑
i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables,
with each xi ∈ Rni . We can also partition A accordingly

A = [A1 . . . , AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient, is
that the minimization decomposes into B separate problems:

x+ ∈ argmin
x

B∑
i=1

fi(xi) + uTAx

⇐⇒ x+i ∈ argmin
xi

fi(xi) + uTAixi, i = 1, . . . , B

11

Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . , B

u(k) = u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi
• Gather: collect Aixi from

each processor, update the
global dual variable u

ux1

u x2 u x3

12

Inequality constraints

Consider

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

Dual decomposition, i.e., projected subgradient method:

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . , B

u(k) =

(
u(k−1) + tk

(B∑
i=1

Aix
(k)
i − b

))
+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui},
i = 1, . . . ,m

13

Price coordination interpretation (Vandenberghe):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+j = (uj − tsj)+, j = 1, . . . ,m

where s = b−
∑B

i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative

14

Augmented Lagrangian method
(also known as: method of multipliers)

Dual ascent disadvantage: convergence requires strong conditions.
Augmented Lagrangian method transforms the primal problem:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

where ρ > 0 is a parameter. Clearly equivalent to original problem.
Strongly convex if A has full column rank. Dual gradient ascent:

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)

15

Notice step size choice tk = ρ in dual algorithm. Why? Since x(k)

minimizes f(x) + (u(k−1))TAx+ ρ
2‖Ax− b‖

2
2 over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

This is the stationarity condition for original primal problem; under
mild conditions Ax(k) − b→ 0 as k →∞, so KKT conditions are
satisfied in the limit and x(k), u(k) converge to solutions

• Advantage: augmented Lagrangian gives better convergence

• Disadvantage: lose decomposability! (Separability is ruined)

16

Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: try for best
of both worlds. Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

As before, we augment the objective

min
x

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

subject to Ax+Bz = c

for a parameter ρ > 0. We define augmented Lagrangian

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) + ρ

2
‖Ax+Bz − c‖22

17

ADMM repeats the steps, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)

Note that the usual method of multipliers would have replaced the
first two steps by a joint minimization

(x(k), z(k)) = argmin
x,z

Lρ(x, z, u
(k−1))

18

Convergence guarantees

Under modest assumptions on f, g (these do not require A,B to
be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = Ax(k) −Bz(k) − c→ 0 as
k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where
f? + g? is the optimal primal objective value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method.
Theory still being developed, see, e.g., in Hong and Luo (2012),
Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015)

19

Scaled form ADMM

Scaled form: denote w = u/ρ, so augmented Lagrangian becomes

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ w‖22 −

ρ

2
‖w‖22

and ADMM updates become

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that here kth iterate w(k) is just a running sum of residuals:

w(k) = w(0) +

k∑
i=1

(
Ax(i) +Bz(i) − c

)
20

Example: alternating projections

Consider finding a point in intersection of convex sets C,D ⊆ Rn:

min
x

IC(x) + ID(x)

To get this into ADMM form, we express it as

min
x,z

IC(x) + ID(z) subject to x− z = 0

Each ADMM cycle involves two projections:

x(k) = argmin
x

PC
(
z(k−1) − w(k−1)

)
z(k) = argmin

z
PD
(
x(k) + w(k−1)

)
w(k) = w(k−1) + x(k) − z(k)

21

Compare classic alternating projections algorithm (von Neumann):

x(k) = argmin
x

PC
(
z(k−1)

)
z(k) = argmin

z
PD
(
x(k)

)
Difference is ADMM utilizes a dual variable w to offset projections.
When (say) C is a linear subspace, ADMM algorithm becomes

x(k) = argmin
x

PC
(
z(k−1)

)
z(k) = argmin

z
PD
(
x(k) + w(k−1)

)
w(k) = w(k−1) + x(k) − z(k)

Initialized at z(0) = y, this is equivalent to Dykstra’s algorithm for
finding the closest point in C ∩D to y

22

References
• S. Boyd and N. Parikh and E. Chu and B. Peleato and J.

Eckstein (2010), “Distributed optimization and statistical
learning via the alternating direction method of multipliers”

• W. Deng and W. Yin (2012), “On the global and linear
convergence of the generalized alternating direction method of
multipliers”

• M. Hong and Z. Luo (2012), “On the linear convergence of
the alternating direction method of multipliers”

• F. Iutzeler and P. Bianchi and Ph. Ciblat and W. Hachem,
(2014), “Linear convergence rate for distributed optimization
with the alternating direction method of multipliers”

• R. Nishihara and L. Lessard and B. Recht and A. Packard and
M. Jordan (2015), “A general analysis of the convergence of
ADMM”

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

23

