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Last time: stochastic gradient descent

Consider

min
x

1

m

m∑
i=1

fi(x)

Stochastic gradient descent or SGD: let x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇fik(x
(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . ,m} is chosen uniformly at random. Step sizes
tk chosen to be fixed and small, or diminishing

Compare to full gradient, which would use 1
m

∑m
i=1∇fi(x). Upside

of SGD: much (potentially much, much) cheaper iterations

Downside: can be slow to converge, attains suboptimal rates. Can
be improved (more later?)
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Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B ≤ minx f(x)

For example, consider the following simple LP

min
x,y

x+ y

subject to x+ y ≥ 2

x, y ≥ 0

What’s a lower bound? Easy, take B = 2

But didn’t we get “lucky”?
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Try again:

min
x,y

x+ 3y

subject to x+ y ≥ 2

x, y ≥ 0

x+ y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2

More generally:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

a+ b = p

a+ c = q

a, b, c ≥ 0

Lower bound B = 2a, for any
a, b, c satisfying above
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What’s the best we can do? Maximize our lower bound over all
possible a, b, c:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Called primal LP

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP

Note: number of dual variables is number of primal constraints
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Try another one:

min
x,y

px+ qy

subject to x ≥ 0

y ≤ 1

3x+ y = 2

Primal LP

max
a,b,c

2c− b

subject to a+ 3c = p

− b+ c = q

a, b ≥ 0

Dual LP

Note: in the dual problem, c is unconstrained
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Outline

Today:

• Duality in general LPs

• Max flow and min cut

• Second take on duality

• Matrix games
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Duality for general form LP

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,v

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (Ax− b) + vT (Gx− h) ≤ 0

⇐⇒ (−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value
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Example: max flow and min cut

Soviet railway network (from Schrijver (2002), “On the history of
transportation and maximum flow problems”)
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s

t

fij
cij

Given graph G = (V,E), define flow fij ,
(i, j) ∈ E to satisfy:

• fij ≥ 0, (i, j) ∈ E

• fij ≤ cij , (i, j) ∈ E

•
∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj , k ∈ V \{s, t}

Max flow problem: find flow that maximizes total value of the flow
from s to t. That is, as an LP:

max
f∈R|E|

∑
(s,j)∈E

fsj

subject to 0 ≤ fij ≤ cij for all (i, j) ∈ E∑
(i,k)∈E

fik =
∑

(k,j)∈E

fkj for all k ∈ V \ {s, t}
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Derive the dual, in steps:

• Note that∑
(i,j)∈E

(
− aijfij + bij(fij − cij)

)
+

∑
k∈V \{s,t}

xk

( ∑
(i,k)∈E

fik −
∑

(k,j)∈E

fkj

)
≤ 0

for any aij , bij ≥ 0, (i, j) ∈ E, and xk, k ∈ V \ {s, t}
• Rearrange as ∑

(i,j)∈E

Mij(a, b, x)fij ≤
∑

(i,j)∈E

bijcij

where Mij(a, b, x) collects terms multiplying fij
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• Want to make LHS in previous inequality equal to primal

objective, i.e.,


Msj = bsj − asj + xj want this = 1

Mit = bit − ait − xi want this = 0

Mij = bij − aij + xj − xi want this = 0

• We’ve shown that

primal optimal value ≤
∑

(i,j)∈E

bijcij ,

subject to a, b, x satisfying constraints. Hence dual problem is
(minimize over a, b, x to get best upper bound):

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij + xj − xi ≥ 0 for all (i, j) ∈ E

b ≥ 0, xs = 1, xt = 0
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Suppose that at the solution, it just so happened that

xi ∈ {0, 1} for all i ∈ V

Let A = {i : xi = 1}, B = {i : xi = 0}; note s ∈ A, t ∈ B. Then

bij ≥ xi − xj for (i, j) ∈ E, b ≥ 0

imply that bij = 1 if i ∈ A and j ∈ B, and 0 otherwise. Moreover,
the objective

∑
(i,j)∈E bijcij is the capacity of cut defined by A,B

That is, we’ve argued that the
dual is the LP relaxation of the
min cut problem:

min
b∈R|E|, x∈R|V |

∑
(i,j)∈E

bijcij

subject to bij ≥ xi − xj

bij , xi, xj ∈ {0, 1}
for all i, j
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Therefore, from what we know so far:

value of max flow ≤
optimal value for LP relaxed min cut ≤

capacity of min cut

Famous result, called max flow min cut theorem: value of max flow
through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a
phenomenon called strong duality

How often does this happen? More on this soon
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Another perspective on LP duality

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,b

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)
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In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0

Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v

−∞ otherwise

Now we can maximize g(u, v) over u and v ≥ 0 to get the tightest
bound, and this gives exactly the dual LP as before

This last perspective is actually completely general and applies to
arbitrary optimization problems (even nonconvex ones)
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Example: mixed strategies for matrix games

Setup: two players, vs. , and a payout matrix P

R

J

1 2 . . . n
1 P11 P12 . . . P1n

2 P21 P22 . . . P2n

. . .
m Pm1 Pm2 . . . Pmn

Game: if J chooses i and
R chooses j, then J must
pay R amount Pij (don’t
feel bad for J—this can be
positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x : P(J chooses i) = xi, i = 1, . . . ,m

y : P(R chooses j) = yj , j = 1, . . . , n

17



The expected payout then, from J to R, is

m∑
i=1

n∑
j=1

xiyjPij = xTPy

Now suppose that, because J is wiser, he will allow R to know his
strategy x ahead of time. In this case, R will choose y to maximize
xTPy, which results in J paying off

max {xTPy : y ≥ 0, 1T y = 1} = max
i=1,...,n

(P Tx)i

J’s best strategy is then to choose his distribution x according to

min
x

max
i=1,...,n

(P Tx)i

subject to x ≥ 0, 1Tx = 1
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In an alternate universe, if R were somehow wiser than J, then he
might allow J to know his strategy y beforehand

By the same logic, R’s best strategy is to choose his distribution y
according to

max
y

min
j=1,...,m

(Py)j

subject to y ≥ 0, 1T y = 1

Call R’s expected payout in first scenario f?
1 , and expected payout

in second scenario f?
2 . Because it is clearly advantageous to know

the other player’s strategy, f?
1 ≥ f?

2

But by Von Neumman’s minimax theorem: we know that f?
1 = f?

2

... which may come as a surprise!
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Recast first problem as an LP:

min
x,t

subject to x ≥ 0, 1Tx = 1

P Tx ≤ t

Now form what we call the Lagrangian:

L(x, t, u, v, y) = t− uTx+ v(1− 1Tx) + yT (P Tx− t1)

and what we call the Lagrange dual function:

g(u, v, y) = min
x,t

L(x, t, u, v, y)

=

{
v if 1− 1T y = 0, Py − u− v1 = 0

−∞ otherwise
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Hence dual problem, after eliminating slack variable u, is

max
y,v

v

subject to y ≥ 0, 1T y = 1

Py ≥ v

This is exactly the second problem, and therefore again we see that
strong duality holds

So how often does strong duality hold? In LPs, as we’ll see, strong
duality holds unless both the primal and dual are infeasible

21



References

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Chapter 5

• R. T. Rockafellar (1970), “Convex analysis”, Chapters 28–30

22


