Frank-Wolfe Method

Ryan Tibshirani
Convex Optimization 10-725

Last time: ADMM

For the problem

min f(x)+ g(z) subject to Az + Bz =c

)

we form augmented Lagrangian (scaled form):
L = 2lAz— B 2 2|2
o,20) = f(2) + 9(2) + 2| Aw = B+ e+ wllf — &)

Alternating direction method of multipliers or ADMM:

k)

2®) = argmin Lp(x,z(k_1)7w(’f—1))

xT

2(®) = argmin Lp(x(k),z,w(k_l))

w® — =1 L 4x® L gk

Converges like a first-order method. Very flexible framework

Projected gradient descent
Consider constrained problem
min f(z) subject to z € C

where f is convex and smooth, and C' is convex. Recall projected
gradient descent chooses an initial (%), repeats for k = 1,2,3,. ..

z®) = Po (x(k_l) - thf(:r(k_l))

where P¢ is the projection operator onto the set C. Special case
of proximal gradient, motivated by local quadratic expansion of f:

1
2 = P (argmin V£ (2 0) (y — 260) 4y x“f—”n%)
Yy

Motivation for today: projections are not always easy!

Frank-Wolfe method

The Frank-Wolfe method, also called conditional gradient method,
uses a local linear expansion of f:

s ¢ argmin Vf(z*F1)Ts
seC

28 = (1 = p)2#D 4 s

Note that there is no projection; update is solved directly over C

Default step sizes: v, =2/(k+ 1), k =1,2,3,.... Note for any
0 < <1, we have) e C by convexity. Can rewrite update as

2) = 1) oy (1) (k)

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds

(From Jaggi 2011)

Norm constraints

What happens when C' = {x : ||z|| <t} for a norm || - ||? Then

s € argmin Vf(z*~))Ts
lIsli<t

=—t- (argmax Vf(:c(kl))Ts>
l[sll<1

= —t- 0|V f(a* D).

where || - ||« denotes the corresponding dual norm. That is, if we
know how to compute subgradients of the dual norm, then we can
easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C' = {x : ||z|| <t}

Outline

Today:
® Examples
® Convergence analysis

® Properties and variants

Path following

Example: ¢; regularization

For the ¢1-regularized problem

min f(x) subject to ||z|; <t
xT

we have s*=1 ¢ —t9||V f(2*~1)||». Frank-Wolfe update is thus
ip—1 € argmax ‘Vif(az(kfl))’
i=1,...,p
z®) — (1-— 'yk)a;(k_l) — Yt - sign(Vik_lf(a:(k_l))) €,
Like greedy coordinate descent! (But with diminshing steps)

Note: this is a lot simpler than projection onto the ¢; ball, though
both require O(n) operations

Example: 7, regularization

For the ¢,-regularized problem

min f(z) subject to ||z, <t
T

for 1 < p < oo, we have s*=1) € —19||V f(x*~1)]|,, where p, q
are dual, i.e., 1/p+1/qg = 1. Claim: can choose

sk D — . sign(V fi(z*1)) - |vfi($(;€_1))‘p/q’ t=1L...,m

where « is a constant such that ||s(*~1)||, =t (check this!), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler projection onto the /,, ball, for general p!
Aside from special cases (p = 1,2, 00), these projections cannot be
directly computed (must be treated as an optimization)

Example: trace norm regularization

For the trace-regularized problem

m)}n f(X) subject to [| Xl <t

we have S*=1D ¢ 9|V f(X#=1)||,p. Claim: can choose
S — .7

where u, v are leading left and right singular vectors of Vf(X(k_l))
(check this!), and then Frank-Wolfe updates are as usual

Note: this substantially simpler and cheaper than projection onto
the trace norm ball, which requires a singular value decomposition!

10

Constrained and Lagrange forms

Recall that solution of the constrained problem
mxin f(x) subject to ||z|| <t
are equivalent to those of the Lagrange problem
min f(z)+ Az

as we let the tuning parameters ¢ and A vary over [0, 0o0]. Typically
in statistics and ML problems, we would just solve whichever form
is easiest, over wide range of parameter values, then use CV

So we should also compare the Frank-Wolfe updates under || - || to
the proximal operator of || - ||

11

® /1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

® /, norm: Frank-Wolfe update computes raises each entry of
gradient to power and sums, in O(n) flops; proximal operator
not generally directly computable

® Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Various other constraints yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)

12

Example: lasso comparison

Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:

—— Projected gradient
—— Conditional gradient

1e+03
|

f—fstar
le+01 1le+02
I I

1e+00
|

le-01

0 200 400 600 800 1000

k

Note: FW uses standard step sizes, line search would probably help

13

Duality gap

Frank-Wolfe iterations admit a very natural duality gap:

g(a®) = V (x0T (2R _ (k)
Claim: it holds that f(z(®)) — f* < g(z®)
Proof: by the first-order condition for convexity
F(s) 2 f(@™) + 9 (@) (s — 2®)
Minimizing both sides over all s € C' yields
£z f@®) + min V@) (s - 2)
= f(z®) + Vf(=®)T (s — k)

Rearranged, this gives the duality gap above

14

Why do we call it“duality gap”? Rewrite original problem as
min f(2) + Io(x)
where I is the indicator function of C'. The dual problem is
max —f*(u) = I6(=u)
where I/, is the support function of C. Duality gap at z,u is
Fl@) + 5 (u) + IE(—u) 2 ol u+ 15 (—u)
Evaluated at 2 = 2(®), u = V f(z(*)), this gives

V(@™ Te® 4 max —V (@) Ts = V()T (z®) — sk)

seC

which is our gap

15

Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

M= ma o S(f) - @) - V@) - 0)
z,s,y€C
y=(1-")z+7s

Note that M = 0 for linear f, and f(y) — f(z) — Vf(2)T(y —)
is called the Bregman divergence, defined by f

Theorem: The Frank-Wolfe method using standard step sizes
v =2/(k+1), k=1,2,3,... satisfies

2M

(k)y — p* < 222
Fa) - <

Thus number of iterations needed for f(z(¥)) — f* < e is O(1/e)

16

This matches the sublinear rate for projected gradient descent for
Lipschitz V f, but how do the assumptions compare?

For Lipschitz V f with constant L, recall
T L 2
fly) = f(2) = V(@) (y =) < Sy — 2
Maximizing over all y = (1 —)z + s, and multiplying by 2/~2,

2 L
M max o S Cly—al3

vel0,1] 2
z,8,yeC
y=(1—7y)z+vs
= max L|lz — 5|3 = L - diam?(C)
z,s€C

Hence assuming a bounded curvature is basically no stronger than
what we assumed for projected gradient

Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate:

2
f@®) < f@hD) = pg(@®D) + Lt

Here g(x) = maxsec Vf(2)T (z — s) is duality gap defined earlier

k—1) k—1)

Proof: write 7 = x(k), x = , 8= s

f@®) = flz+7(s —2))
2

< f(@) +9VF @) (s —2) + M
2

=ﬂ@—w®+%M

.Y = Yg. Then

Second line used definition of M, and third line the definition of g

18

The proof of the convergence result is now straightforward. Denote
by h(x) = f(x) — f* the suboptimality gap at x. Basic inequality:

2
Aa®) < h(a®D) = 3eg(a®D) +
72
< haD) — ph(aV) + L p
,72
= (1 —) h(z*D) + ?kM

where in the second line we used g(a:(k’_l)) > h(gs(k’_l))

To get the desired result we use induction:

2 oM 2 *M oM
h(z®)) < (1- < 2T
(z)—< k+1>kz+1+<k+1> 5 = k12

19

Affine invariance

Frank-Wolfe updates are affine invariant: for nonsingular matrix A,
define x = Ax’, F(2') = f(Axz'), consider Frank-Wolfe on F":

s’ = argmin VF(z')"z
z€A-1C

(@)" = (1 =)’ +s'

Multiplying by A produces same Frank-Wolfe update as that from
f. Convergence analysis is also affine invariant: curvature constant

2
M = max —(F N—F(x) - VF@@)T '—x’)
max (y') — F(z') ()" (y)
s y'eA=1C
y'=(1—y)z'+7s'

matches that of f, because VF(2)T(y — 2') = Vf(2)T (y — x)

20

Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates: suppose
we choose s(*~1) so that

V(D) sk=D) < min v p(zk-D)Ts 4 Mk

1)
seC 2

where § > 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Frank-Wolfe using step sizes v, = 2/(k + 1), k =
1,2,3,..., and inaccuracy parameter § > 0, satisfies
2M
Ry — pr< 22 (146
Fa®) - < 2+ 0)

Note: the optimization error at step k is M~ /2 - d. Since vy, — 0,
we require the errors to vanish

21

Two variants

Two important variants of Frank-Wolfe:
® Line search: instead of using standard step sizes, use
Yk = argmin f(l‘(k_l) + (s — x(k_l)))
v€[0,1]
ateach k =1,2,3,.... Or, we could use backtracking

® Fully corrective: directly update according to

k)

2z*) = argmin f(y) subject to y € conv{ar(o)7 sO s(kfl)}

y
Both variants lead to the same O(1/¢) iteration complexity

Another popular variant: away steps, which get linear convergence
under strong convexity

22

Path following

Given the norm constrained problem
min f(x) subject to ||z] <t
x

Frank-Wolfe can be used for path following, i.e., we can produce an
approximate solution path Z(t) that is e-suboptimal for every ¢ > 0.
Let t9p = 0 and z*(0) = 0, fix m > 0, repeat for k = 1,2,3,.. ..

e Calculate (1 1/m)
—1/m)e

IV f(&(tk-1))]«
and set &(t) = &(tx—1) for all t € (tx—1,tx)

e Compute Z(t;) by running Frank-Wolfe at t = ¢;, terminating
when the duality gap is < ¢/m

tp =tp—1+

(This is a simplification of the strategy from Giesen et al., 2012)

23

Claim: this produces (piecewise-constant) path with

F@) — f(z*(t)) < e forallt>0

Proof: rewrite the Frank-Wolfe duality gap as

gi(x) = max Vf(x)"(z —s) = Vf(z) z +t|VF(2)|

sl <t

This is a linear function of ¢. Hence if g;(x) < ¢/m, then we can
increase t until t+ =t + (1 —1/m)e/||Vf(z)]«, because

gr+(2) = V(@) w + |V (@)l +e—e/m<e

i.e., the duality gap remains < € for the same x, between ¢ and ¢

24

References

K. Clarkson (2010), “Coresets, sparse greedy approximation,

and the Frank-Wolfe algorithm”
J. Giesen and M. Jaggi and S. Laue, S. (2012),

“Approximating parametrized convex optimization problems”

M. Jaggi (2011), “Sparse convex optimization methods for
machine learning”

M. Jaggi (2011), “Revisiting Frank-Wolfe: projection-free
sparse convex optimization”

M. Frank and P. Wolfe (2011), “An algorithm for quadratic
programming”

R. J. Tibshirani (2015), “A general framework for fast
stagewise algorithms”

25

