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Last time: ADMM

For the problem

min f(x)+ g(z) subject to Az + Bz =c

)

we form augmented Lagrangian (scaled form):
L = 2lAz— B 2 2|2
o,20) = f(2) + 9(2) + 2| Aw = B+ e+ wllf — &)

Alternating direction method of multipliers or ADMM:

k)

2®) = argmin Lp(x,z(k_1)7w(’f—1))

xT

2(®) = argmin Lp(x(k),z,w(k_l))

w® — =1 L 4x® L gk

Converges like a first-order method. Very flexible framework



Projected gradient descent
Consider constrained problem
min f(z) subject to z € C

where f is convex and smooth, and C' is convex. Recall projected
gradient descent chooses an initial (%), repeats for k = 1,2,3,. ..

z®) = Po (x(k_l) - thf(:r(k_l))

where P¢ is the projection operator onto the set C. Special case
of proximal gradient, motivated by local quadratic expansion of f:

1
2 = P ( argmin V£ (2 0) (y — 260) 4y x“f—”n%)
Yy

Motivation for today: projections are not always easy!



Frank-Wolfe method

The Frank-Wolfe method, also called conditional gradient method,
uses a local linear expansion of f:

s ¢ argmin Vf(z*F1)Ts
seC

28 = (1 = p)2#D 4 s

Note that there is no projection; update is solved directly over C

Default step sizes: v, =2/(k+ 1), k =1,2,3,.... Note for any
0 < <1, we have ) e C by convexity. Can rewrite update as

2 ) = 1) oy (1) (k)

i.e., we are moving less and less in the direction of the linearization
minimizer as the algorithm proceeds



(From Jaggi 2011)



Norm constraints

What happens when C' = {x : ||z|| <t} for a norm || - ||? Then

s € argmin Vf(z*~))Ts
lIsli<t

=—t- (argmax Vf(:c(kl))Ts>
l[sll<1

= —t- 0|V f(a* D).

where || - ||« denotes the corresponding dual norm. That is, if we
know how to compute subgradients of the dual norm, then we can
easily perform Frank-Wolfe steps

A key to Frank-Wolfe: this can often be simpler or cheaper than
projection onto C' = {x : ||z|| <t}



Outline

Today:
® Examples
® Convergence analysis

® Properties and variants

Path following



Example: ¢; regularization

For the ¢1-regularized problem

min f(x) subject to ||z|; <t
xT

we have s*=1 ¢ —t9||V f(2*~1)||». Frank-Wolfe update is thus
ip—1 € argmax ‘Vif(az(kfl))’
i=1,...,p
z®) — (1-— 'yk)a;(k_l) — Yt - sign(Vik_lf(a:(k_l))) €,
Like greedy coordinate descent! (But with diminshing steps)

Note: this is a lot simpler than projection onto the ¢; ball, though
both require O(n) operations



Example: 7, regularization

For the ¢,-regularized problem

min f(z) subject to ||z, <t
T

for 1 < p < oo, we have s*=1) € —19||V f(x*~1)]|,, where p, q
are dual, i.e., 1/p+1/qg = 1. Claim: can choose

sk D — . sign(V fi(z*1)) - |vfi($(;€_1))‘p/q’ t=1L...,m

where « is a constant such that ||s(*~1)||, =t (check this!), and
then Frank-Wolfe updates are as usual

Note: this is a lot simpler projection onto the /,, ball, for general p!
Aside from special cases (p = 1,2, 00), these projections cannot be
directly computed (must be treated as an optimization)



Example: trace norm regularization

For the trace-regularized problem

m)}n f(X) subject to [| Xl <t

we have S*=1D ¢ 9|V f(X#=1)||,p. Claim: can choose
S — .7

where u, v are leading left and right singular vectors of Vf(X(k_l))
(check this!), and then Frank-Wolfe updates are as usual

Note: this substantially simpler and cheaper than projection onto
the trace norm ball, which requires a singular value decomposition!
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Constrained and Lagrange forms

Recall that solution of the constrained problem
mxin f(x) subject to ||z|| <t
are equivalent to those of the Lagrange problem
min f(z)+ Az

as we let the tuning parameters ¢ and A vary over [0, 0o0]. Typically
in statistics and ML problems, we would just solve whichever form
is easiest, over wide range of parameter values, then use CV

So we should also compare the Frank-Wolfe updates under || - || to
the proximal operator of || - ||
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® /1 norm: Frank-Wolfe update scans for maximum of gradient;
proximal operator soft-thresholds the gradient step; both use
O(n) flops

® /, norm: Frank-Wolfe update computes raises each entry of
gradient to power and sums, in O(n) flops; proximal operator
not generally directly computable

® Trace norm: Frank-Wolfe update computes top left and right
singular vectors of gradient; proximal operator soft-thresholds
the gradient step, requiring a singular value decomposition

Various other constraints yield efficient Frank-Wolfe updates, e.g.,
special polyhedra or cone constraints, sum-of-norms (group-based)
regularization, atomic norms. See Jaggi (2011)
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Example: lasso comparison

Comparing projected and conditional gradient for constrained lasso
problem, with n = 100, p = 500:

—— Projected gradient
—— Conditional gradient

1e+03
|

f—fstar
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I I

1e+00
|

le-01
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k

Note: FW uses standard step sizes, line search would probably help
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Duality gap

Frank-Wolfe iterations admit a very natural duality gap:

g(a®) = V (x0T (2R _ (k)
Claim: it holds that f(z(®)) — f* < g(z®)
Proof: by the first-order condition for convexity
F(s) 2 f(@™) + 9 (@) (s — 2®)
Minimizing both sides over all s € C' yields
£z f@®) + min V@) (s - 2)
= f(z®) + Vf(=®)T (s — k)

Rearranged, this gives the duality gap above
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Why do we call it“duality gap”? Rewrite original problem as
min f(2) + Io(x)
where I is the indicator function of C'. The dual problem is
max —f*(u) = I6(=u)
where I/, is the support function of C. Duality gap at z,u is
Fl@) + 5 (u) + IE(—u) 2 ol u+ 15 (—u)
Evaluated at 2 = 2(®), u = V f(z(*)), this gives

V(@™ Te® 4 max —V (@) Ts = V()T (z®) — sk)

seC

which is our gap
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Convergence analysis

Following Jaggi (2011), define the curvature constant of f over C:

M= ma o S(f) - @) - V@) - 0)
z,s,y€C
y=(1-")z+7s

Note that M = 0 for linear f, and f(y) — f(z) — Vf(2)T(y — )
is called the Bregman divergence, defined by f

Theorem: The Frank-Wolfe method using standard step sizes
v =2/(k+1), k=1,2,3,... satisfies

2M

(k)y — p* < 222
Fa) - <

Thus number of iterations needed for f(z(¥)) — f* < e is O(1/e)
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This matches the sublinear rate for projected gradient descent for
Lipschitz V f, but how do the assumptions compare?

For Lipschitz V f with constant L, recall
T L 2
fly) = f(2) = V(@) (y =) < Sy — 2
Maximizing over all y = (1 — )z + s, and multiplying by 2/~2,

2 L
M max o S Cly—al3

vel0,1] 2
z,8,yeC
y=(1—7y)z+vs
= max L|lz — 5|3 = L - diam?(C)
z,s€C

Hence assuming a bounded curvature is basically no stronger than
what we assumed for projected gradient



Basic inequality

The key inequality used to prove the Frank-Wolfe convergence rate:

2
f@®) < f@hD) = pg(@®D) + Lt

Here g(x) = maxsec Vf(2)T (z — s) is duality gap defined earlier

k—1) k—1)

Proof: write 7 = x(k), x = , 8= s

f@®) = flz+7(s —2))
2

< f(@) +9VF @) (s —2) + M
2

=ﬂ@—w®+%M

.Y = Yg. Then

Second line used definition of M, and third line the definition of g
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The proof of the convergence result is now straightforward. Denote
by h(x) = f(x) — f* the suboptimality gap at x. Basic inequality:

2
Aa®) < h(a®D) = 3eg(a®D) +
72
< haD) — ph(aV) + L p
,72
= (1 — ) h(z*D) + ?kM

where in the second line we used g(a:(k’_l)) > h(gs(k’_l))

To get the desired result we use induction:

2 oM 2 \*M oM
h(z®)) < (1- < 2T
(z )—< k+1>kz+1+<k+1> 5 = k12
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Affine invariance

Frank-Wolfe updates are affine invariant: for nonsingular matrix A,
define x = Ax’, F(2') = f(Axz'), consider Frank-Wolfe on F":

s’ = argmin VF(z')"z
z€A-1C

(@)" = (1 =)’ +s'

Multiplying by A produces same Frank-Wolfe update as that from
f. Convergence analysis is also affine invariant: curvature constant

2
M = max —(F N—F(x) - VF@@)T '—x’)
max (y') — F(z') ()" (y )
s y'eA=1C
y'=(1—y)z'+7s'

matches that of f, because VF(2)T(y — 2') = Vf(2)T (y — x)
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Inexact updates

Jaggi (2011) also analyzes inexact Frank-Wolfe updates: suppose
we choose s(*~1) so that

V(D) sk=D) < min v p(zk-D)Ts 4 Mk

1)
seC 2

where § > 0 is our inaccuracy parameter. Then we basically attain
the same rate

Theorem: Frank-Wolfe using step sizes v, = 2/(k + 1), k =
1,2,3,..., and inaccuracy parameter § > 0, satisfies
2M
Ry — pr< 22 (146
Fa®) - < 2+ 0)

Note: the optimization error at step k is M~ /2 - d. Since vy, — 0,
we require the errors to vanish
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Two variants

Two important variants of Frank-Wolfe:
® Line search: instead of using standard step sizes, use
Yk = argmin f(l‘(k_l) + (s — x(k_l)))
v€[0,1]
ateach k =1,2,3,.... Or, we could use backtracking

® Fully corrective: directly update according to

k)

2z*) = argmin f(y) subject to y € conv{ar(o)7 sO s(kfl)}

y
Both variants lead to the same O(1/¢) iteration complexity

Another popular variant: away steps, which get linear convergence
under strong convexity
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Path following

Given the norm constrained problem
min f(x) subject to ||z] <t
x

Frank-Wolfe can be used for path following, i.e., we can produce an
approximate solution path Z(t) that is e-suboptimal for every ¢ > 0.
Let t9p = 0 and z*(0) = 0, fix m > 0, repeat for k = 1,2,3,.. ..

e Calculate (1 1/m)
—1/m)e

IV f(&(tk-1)) ]«
and set &(t) = &(tx—1) for all t € (tx—1,tx)

e Compute Z(t;) by running Frank-Wolfe at t = ¢;, terminating
when the duality gap is < ¢/m

tp =tp—1+

(This is a simplification of the strategy from Giesen et al., 2012)
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Claim: this produces (piecewise-constant) path with

F@) — f(z*(t)) < e forallt>0

Proof: rewrite the Frank-Wolfe duality gap as

gi(x) = max Vf(x)"(z —s) = Vf(z) z +t|VF(2)|

sl <t

This is a linear function of ¢. Hence if g;(x) < ¢/m, then we can
increase t until t+ =t + (1 —1/m)e/||Vf(z)]«, because

gr+(2) = V(@) w + |V (@)l +e—e/m<e

i.e., the duality gap remains < € for the same x, between ¢ and ¢
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