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Declare

@ This lecture is based on the paper “Neon2” by Zeyuan Allen-Zhu and
myself (https://arxiv.org/abs/1711.06673) . Please do distribute.
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°
@ Each Godzilla defines a local minima.
@ The "heaviest” Godzilla: The global minima.
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@ Non-convex optimization: Can we find these Godzillas?
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Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

earth surface with many Godzillas

no gradient!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.
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Non convex optimization: The goals

Goal 1: Find at least one Godzilla, as fast as possible.
Goal 2: Find the "heaviest” Godzilla.
Goal 1 can be done efficiently (the focus of this lecture).

Goal 2 is in general hard, but possible in some settings (beyond this
lecture, come to my course next semester if you want to know more).
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Non convex optimization: Before going to the math

@ Where do we use non-convex optimization? Why *** do we need to
learn it?
@ You didn't need to learn it — at least when it was ten years ago.
e The problems solved in practice, especially in machine
learning /statistics, are mostly convex.
@ Linear regression, logistic regression;
o Kernel methods;
@ Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);
e But now, they are mostly non-convex, mainly for one reason:
o Deep learning / Neural networks.

@ Non-convex landscape:

o
@ What can we say in this regime?
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minima, saddle points etc.

Given a second-order differentiable function f: RY — R:

We can do a local taylor expansion of the function around any point x:

F(x+7) = f(x) +(VF(x),7) + 37TV (x)7 £ O(|[3). | * |2 is the
Euclidean norm.

Here, a= b+ c means ac[b—-c,b+c].

Define: Lipschitzness: L =sup,crd |VF(X)]2.

Yuanzhi Li (CMU) CMU Random Date 9 /31



Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f: RY — R:

We can do a local taylor expansion of the function around any point x:

F(x+7) = f(x) +(VF(x),7) + 37TV (x)7 £ O(|[3). | * |2 is the
Euclidean norm.

Here, a= b+ c means ac[b—-c,b+c].

Define: Lipschitzness: L =sup,crd |VF(X)]2.

Lipschitzness implies: |f(x) — f(y)| < L||x — y|2, for every x,y € R.
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Non convex optimization: The definition

o Define: Smoothness B = sup,cgd | V2f(x)|lsp- || * [ sp is the spectral
norm.
@ Smoothness implies:
o (Upper quadratic bound): For all x,y e RY,

Fy) < FO) +(VF(x),y = x)+5x = y[3.

quadratic upper bound

k><
]

o (Lower quadratic bound): For all x,y € RY,
F(y) 2 F(x) + (VF(x),y = x)-5 |x - y[3.

~

o Note: For convex f, one shall have (lower linear bound):
fy) 2 F(x) +(VF(x),y - x).
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Non convex optimization: The definition

@ The Lipschitzness of the hessian : For all x,y € RY,
[V2F () = V2E () lsp < X =y 2.
o This implies (important): For every x, 7 € RY:

Flx+7) = F(x) + (VF(x),7) + %TTV%(X)T |73

e V2f(x) might not be positive semi-definite (PSD)! (Convex function
<~ V2f(x) is PSD for almost every x).
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Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f: Vf(x) =0 <= x is the global minima (e.g.
f(x) = miny cgd f(y)).

e What about non-convex functions? V£ (x) =0 implies?

saddle points
~~
~_
.. ~~
° local minima global minima

Global minima, local minima, saddle points.
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Non convex optimization: The property

saddle points

%

local minima global minima

@ Non-convex landscape:
@ local minima (second-order local minima):

o Vf(x)=0and V3f(x) is PSD (positive semi-definite, i.e. V2f(x) > 0).
@ saddle point:

e Vf(x)=0and V?f(x) is not PSD.
o There exists a v € R such that vTv2f(x)v < 0.
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Non convex optimization: The goal

What do we want when optimizing a non-convex function f?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.
@ Goal: Given a function f: RY - R, can we find a local minima
efficiently?
e Given a function f : R? - R that is S-smooth and ~- Lipschitz
Hessian, for every ¢,6 > 0, find a point x such that:
o |VF(x)|2<e.
o V2f(x) = -dl.

In time poly(1/e,1/6,~, 8, d).
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Non convex optimization: The first approach
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Recall the goal: find a point x such that
o |VF(x)|2<e.
o V2f(x) = -4l.

How do we do it?

Approach 1 (Algorithm Forklore):

Do gradient descent, until we arrive at a point x” with |[Vf(x")||2 <e.
e Simple observation: For every 8-smooth f,

F(x=nvf(x) < F() =nl VG5 +7° 82|V (x) 2

o Gradient large == decrease function value using gradient descent.
Check if V2f(x") = =61.
o If not, find a unit vector v such that v v2f(x’)v < =6. Can be done
efficiently via eigenvectors solver.
o Hessian descent: For a step size n, if f(x"+nv) < f(x'-nv), go to
x" =x"+nv. Otherwise go to x”" = x" —nv.
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Non convex optimization: The first approach

@ Recall the goal: find a point x such that
o |VF(x)|2<e.
o V2f(x)>-4l.

e How do we do it?
e Approach 1 (Algorithm Forklore):
@ Do gradient descent, until we arrive at a point x” with | Vf(x')]2 <e.
e Simple observation: For every 8-smooth f,
f(x =nVF(x)) < F(x) =l VE(x) |3+ B2V (x)]3
o Gradient large == decrease function value using gradient descent.
o Check if V2f(x") = =4l.

o If not, find a unit vector v such that v v2f(x’)v < =6. Can be done
efficiently via eigenvectors solver.

o Hessian descent: For a step size 7, if f(x'+nv) < f(x' —nv), go to
x" =x"+nv. Otherwise go to x”" = x" —nv.

@ Repeat to gradient descent.
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Non convex optimization:

@ Recall: (important property): For every x' 7:
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Non convex optimization:

@ Recall: (important property): For every x' 7:
F 4 7) = () + (VF (), m) 4 7 V2 ()T 271
@ Critical observation:
(F(x" +nv) + F(x" = nqv)) < F(X) + %2VTV2f(X')v +n°

2
Sf(X')—nTéwn

1
2
3
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Non convex optimization:

@ Recall: (important property): For every x' 7:
1
F(X"+7) = F(X) + (VF(X), ) + ETTV%(X)T + |73
@ Critical observation:

2
(f(x +77v)+f(x —77v))<f(x)+ LTy f(x)v+77]
2
Sf(x’)—Té+fy773

1
2

e Taking n = the function value is decreased by at least 6432
) < 1) - .
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Non convex optimization:

@ Recall: (important property): For every x' 7:
1
F(X"+7) = F(X) + (VF(X), ) + ETTV%(X)T + |73
@ Critical observation:

2

%(f(x +77v)+f(x —77v))<f(x)+ vy f(x)v+7n
25

< f(X’) - T +"}/7]3

3
e Taking n = the function value is decreased by at least 64 el

) < 1) - i
@ In other words, a hessian descent would decrease function value by
Q(6%), when the negative eigenvalue of the hessian is < —4: The more
non-convex, the hessian descent works better.
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@ Recall the goal: find a point x such that:
o |VF(x)|2<e.
o V2f(x) > -4l
@ Suppose f is non-negative and the initial point x satisfies:
f(x'™) <1, then:

@ The first approach achieves the goal within: (ignoring poly(~, 3)
factors)
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Non convex optimization: The first approach

@ Recall the goal: find a point x such that:
o |[VF(x)|2<e.
o V2f(x) > -4l
@ Suppose f is non-negative and the initial point x
f(x'™) <1, then:
@ The first approach achieves the goal within: (ignoring poly(~, 3)
factors)
o O(Z%) many gradient evaluations: gradient descent.

Nt satisfies:

e O (6%) many eigenvectors solvers for the hessian matrix: hessian
descent.
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Non convex optimization: The second approach

@ Recall: the first approach needs:

e O (Elz) many gradient evaluations: gradient descent.

e O (6%) many eigenvectors solvers for the hessian matrix: hessian
descent.

o Can we do it faster?

@ Yes, we can reduce the number of gradient evaluations and
completely eigenvectors solvers.

@ Algorithm Neon2.

@ Approach:
e Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
e Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
e Sounds fishy? Loopy argument? We shall see.
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Non convex optimization: The second approach

@ Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with [Vf(x)[2 <€?
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Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f(x) < min cga f(y) + 2
elInO (1) many gradient evaluations for any smooth, convex function f.
e In O( L jogl ) many gradient evaluations if f is a-strongly convex.
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number of gradient evaluations to find a point x with [Vf(x)[2 <€?

Yes, we can reduce the number of gradient evaluations.
Tool: Accelerated gradient descent (AGD). [Nesterov 1983]
Recall: AGD finds an x with f(x) < min cga f(y) + 2:

e InO (1) many gradient evaluations for any smooth, convex function f.

e In O( L jogl ) many gradient evaluations if f is a-strongly convex.
o By the 1-smoothness of f, f(x) < min,ga f(y) + €2 implies that
IVF(x)|2<e.

For smooth, convex function f: AGD can find a point x with
[Vf(x)|2<ein O (%) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31



Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with [Vf(x)[2 <€?

Yes, we can reduce the number of gradient evaluations.
Tool: Accelerated gradient descent (AGD). [Nesterov 1983]
Recall: AGD finds an x with f(x) < min cga f(y) + 2:
e InO (1) many gradient evaluations for any smooth, convex function f.
e In O( L jogl ) many gradient evaluations if f is a-strongly convex.
By the 1-smoothness of f, f(x) < min cgd f(y) + €2 implies that
IVF(x)|2<e.
For smooth, convex function f: AGD can find a point x with
[Vf(x)|2<ein O (%) iterations.

Recall: needs O (Elz) iterations.
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@ For non-convex function, we can do:

Yuanzhi Li (CMU) CMU Random Date 20 / 31



Non convex optimization: The second approach

@ For non-convex function, we can do:

o (Truly non-convex): If V2f(x) has a very negative eigenvalue, then we
do a hessian descent.

Yuanzhi Li (CMU) CMU Random Date 20 / 31



Non convex optimization: The second approach

@ For non-convex function, we can do:

o (Truly non-convex): If V2f(x) has a very negative eigenvalue, then we
do a hessian descent.

hessian descent

Yuanzhi Li (CMU) CMU Random Date 20 / 31



Non convex optimization: The second approach

@ For non-convex function, we can do:

o (Truly non-convex): If V2f(x) has a very negative eigenvalue, then we
do a hessian descent.

hessian descent

o
o (Approximately convex): V2f(x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yuanzhi Li (CMU) CMU Random Date 20 / 31



Non convex optimization: The second approach

@ For non-convex function, we can do:

o (Truly non-convex): If V2f(x) has a very negative eigenvalue, then we
do a hessian descent.

hessian descent

o
o (Approximately convex): V2f(x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

accelerated gradient
descent?

Yuanzhi Li (CMU) CMU Random Date 20 / 31



Non convex optimization: The second approach

@ For non-convex function, we can do:

o (Truly non-convex): If V2f(x) has a very negative eigenvalue, then we
do a hessian descent.

hessian descent

(Approximately convex): V2f(x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

accelerated gradient
descent?

o Yes, we can do it.
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Non convex optimization: The second approach

o General plan: Each iteration, we first find the eigenvector of V2f(x)
with the eigenvalue.
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Non convex optimization: The second approach

o General plan: Each iteration, we first find the eigenvector of V2f(x)
with the eigenvalue.

o If the eigenvalue is too negative: do hessian descent.
e Otherwise, do accelerated gradient descent.

@ In this way, we can reduce the number of gradient evaluations at the
cost of increasing the number of hessian eigenvectors solvers.
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Non convex optimization: The second approach

@ Let us now do the calculation for the exact numbers:
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Non convex optimization: The second approach

@ Let us now do the calculation for the exact numbers:

o For simplicity, | will assume 5=~ =1.

e Taking 61 = ﬁeo'?’ (the “threshold” of large v.s. small for the
negative eigenvalue), then:
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Let us now do the calculation for the exact numbers:

For simplicity, | will assume 5=~ = 1.

Taking 61 = 1—(1)050'5 (the “threshold” of large v.s. small for the
negative eigenvalue), then:

If V2f(x0) = =01/, we do accelerated gradient descent.
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Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:
For simplicity, | will assume 5=~ = 1.

Taking 91 = 1—(1)050'5 (the “threshold” of large v.s. small for the
negative eigenvalue), then:

If V2f(x0) = =01/, we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Q(63) = Q(®).
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Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, | will assume 5=~ = 1.
Taking 61 = 1—(1)050'5 (the “threshold” of large v.s. small for the
negative eigenvalue), then:

If V2f(x0) = =01/, we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Q(63) = Q(®).

@ So, we can do at most O (6%5) many iterations of the hessian descent.
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Non convex optimization: The second approach

o The magic step for AGD when V2f(xg) = =61/
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Non convex optimization: The second approach

o The magic step for AGD when V2f(xg) = =61/
o Define function g(x) = f(x) +4d1[x — 0|3 + hxy.6, (X), where

° hX0751 (X) = 4 X 1||X—X0H2251(”X - X0||2 - 61)2'
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Non convex optimization: The second approach

The magic step for AGD when V2f(xg) > —61/:
Define function g(x) = f(x) +4d1]x — xo|3 + hxy.s, (x), where

hX0751 (X) = 4 X 1||X—X0H2251(”X - X0||2 - 61)2'
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Non convex optimization: The second approach

The magic step for AGD when V2f(xg) > —61/:

Define function g(x) = f(x) +4d1]x — xo|3 + hxy.s, (x), where

hX0751 (X) = 4 X 1||X—X0H2251(”X - X0||2 - 61)2'

g(x)
Xo
P— (x)
25,
°
o Critical observation: g(x) is 91 strongly convex.

Yuanzhi Li (CMU) CMU Random Date 23 /31



Non convex optimization: The second approach

The magic step for AGD when V2f(xg) > —61/:
Define function g(x) = f(x) +4d1]x — xo|3 + hxy.s, (x), where

hX0751 (X) = 4 X 1||X—X0H2251(”X - X0||2 - 61)2'

Critical observation: g(x) is d1 strongly convex.

o When |x - xo||2 < 61: Using the V2f(x) > =26,/ and the strong
convexity of 461 x - xo|3.
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Non convex optimization: The second approach

The magic step for AGD when V2f(xg) > —61/:
Define function g(x) = f(x) +4d1]x — xo|3 + hxy.s, (x), where

hX0751 (X) = 4 X 1||X—X0H2251(”X - X0||2 - 61)2'

Critical observation: g(x) is d1 strongly convex.
o When |x - xo||2 < 61: Using the V2f(x) > =26,/ and the strong
convexity of 461 x - xo|3.
o When |x —xpl2 > d1: Using the strong convexity of hy s, (x).
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Non convex optimization: The second approach
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Non convex optimization: The second approach

o g(x)="7(x)+401|x—- xoﬂg + hyg 5, (X).
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@ Now, use accelerated gradient descent on the d1-strongly convex
function g, we can find a point x; with
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Non convex optimization: The second approach

°
o g(x)="7(x)+401|x—- xoﬂg + hyg 5, (X).

@ Now, use accelerated gradient descent on the d1-strongly convex
function g, we can find a point x; with

o g(x1) < g(x)+e?
o |[Vg(x)]2 <€
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Non convex optimization: The second approach

® g(x) = f(x) +451]x = x0l3 + hyg.5, ().
@ Now, use accelerated gradient descent on the d1-strongly convex
function g, we can find a point x; with
o g(x1) < g(x) +¢%
o [Ve(a)l2 <.

@ in O(ﬁlog g) gradient evaluations.
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Non convex optimization: The second approach

°
@ Recall: g(x) =1f(x)+4d1||x - ong + hyy 5, (x)
o g(x)<g(x)+e%
o [Vg(x)|2<e®
@ Two cases for xi:
o ||x1 = xo[|2 > 91, then
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Non convex optimization: The second approach

o
@ Recall: g(x) =1f(x)+4d1||x - ong + hyy 5, (x)
o g(x1) <g(x) +&%
o |Vg(x)|2<e?
@ Two cases for xi:
° ||X1 —X0||2 > 41, then
o f(x1)<g(x)—-463 <f(x)-Q(e"®): Decrease function value.
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Non convex optimization: The second approach

°
@ Recall: g(x) =1f(x)+4d1||x - ong + hyy 5, (x)
o g(x1) <g(x) +¢%
o [Vg(xi)|2<e
@ Two cases for xi:
° ||X1 —X0||2 > 41, then
o f(x1)<g(x)—-463 <f(x)-Q(e"®): Decrease function value.
o |x1 —xo)2 <01, then |[VF(x1)|2 < Vg (x1)|2 + 867 < e: Gradient is
small.
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@ What did we do?
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Non convex optimization: The second approach

o What did we do?
@ We use 1 hessian eigenvector solver and o) (%) -0 (50?25) gradient

1
evaluations, we obtain at least one of the following:
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o What did we do?
@ We use 1 hessian eigenvector solver and O( ) é(

) gradient
evaluations, we obtain at least one of the foIIowmg

o Decrease the function value by at least Q(¢1®) (Can happen for at
most O (6%5) times).

Yuanzhi Li (CMU) CMU Random Date 26 / 31



Non convex optimization: The second approach

o What did we do?
@ We use 1 hessian eigenvector solver and O( ) é(

) gradient
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Non convex optimization: The second approach

o What did we do?
@ We use 1 hessian eigenvector solver and o) é(

evaluations, we obtain at least one of the foIIowmg
o Decrease the function value by at least Q(¢1®) (Can happen for at
most O (6%5) times).
o Find a point x with |[Vf(x)[2 <e.
e In total, we can find a point x with |[Vf(x)|2<e in O( 175) gradient
evaluations and O (51_5) calls of hessian eigenvectors solver.

) gradient
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Non convex optimization: The second approach

o What did we do?
@ We use 1 hessian eigenvector solver and o) O(
evaluations, we obtain at least one of the foIIowmg

o Decrease the function value by at least Q(¢1®) (Can happen for at
most O (6%5) times).
o Find a point x with |Vf(x)[2<e.

) gradient

e In total, we can find a point x with |[Vf(x)|2<e in O( 175) gradient
evaluations and O (—) calls of hessian eigenvectors solver.

@ Recall: Gradient descent needs O( ) gradient evaluations.
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Non convex optimization: The second approach

@ The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (51_15) calls of hessian
eigenvectors solver.
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Non convex optimization: The second approach

@ The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (51_15) calls of hessian
eigenvectors solver.

@ Goal of each hessian eigenvectors solver: Suppose there is a unit
vector v with vTV2f(x)v < —61, we need to find a unit vector w with

w'V2f(x)w < -0.96;
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Non convex optimization: The second approach

@ The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (51_15) calls of hessian
eigenvectors solver.

@ Goal of each hessian eigenvectors solver: Suppose there is a unit
vector v with vTV2f(x)v < —61, we need to find a unit vector w with

w'V2f(x)w < -0.96;

o Can we do it within O (ﬁ) =0 (80%5) gradient evaluations?
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Non convex optimization: Last piece of Neon2:

@ How to find eigenvectors of a matrix M?
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Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: zg is a random unit vector, update z;,1 = HI\AA/’TZ:Hz

Power method finds unit vector w with w™v2f(x)w < —0.94; in

0 (%) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

o Finds unit vector w with w™v2f(x)w < -0.941 in O(\/—lé_l) iterations

of computing M times a vector.
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Non convex optimization: Last piece of Neon2:

@ How to find eigenvectors of a matrix M?
@ Power method: zg is a random unit vector, update z;,1 = HI\AA/’TZ:Hz
o Power method finds unit vector w with w'™v2f(x)w < —0.96; in
0 (%) iterations of computing M times a vector.
@ Acceleration: Lanzos method/ Chevbyshev polynomial methods.
o Finds unit vector w with w™v2f(x)w < -0.941 in O(\/—lé_l) iterations

of computing M times a vector.

Computing M times a vector? How to compute V2f(x)z for a vector
z in our case? Easy:
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Non convex optimization: Last piece of Neon2:

@ How to find eigenvectors of a matrix M?
@ Power method: zg is a random unit vector, update z;,1 = HI\AA/’TZ:Hz
o Power method finds unit vector w with w'™v2f(x)w < —0.96; in
0 (%) iterations of computing M times a vector.
@ Acceleration: Lanzos method/ Chevbyshev polynomial methods.
o Finds unit vector w with w™v2f(x)w < -0.941 in O(\/—lé_l) iterations

of computing M times a vector.

Computing M times a vector? How to compute V2f(x)z for a vector
z in our case? Easy:

V2f(x)z = im0 w: Only two gradient evaluations for a

sufficiently small 7.
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Non convex optimization: Last piece of Neon2:

@ How to find eigenvectors of a matrix M?

@ Power method: zg is a random unit vector, update z;,1 = HI\AA/’TZ:Hz

o Power method finds unit vector w with w'™v2f(x)w < —0.96; in

0 (%) iterations of computing M times a vector.

@ Acceleration: Lanzos method/ Chevbyshev polynomial methods.
1

VoL

o Finds unit vector w with w™v2f(x)w < -0.941 in O( ) iterations

of computing M times a vector.

e Computing M times a vector? How to compute V2f(x)z for a vector
z in our case? Easy:

o V2f(x)z =limy,_0 w: Only two gradient evaluations for a
sufficiently small 7.

@ Critical Lemma of Neon2: n only needs to be m small, and the
approximation error won't mess up the eigenvectors solver.
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approximation error won't mess up the eigenvectors solver.

@ In general, when you have some in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?
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Non convex optimization: The second approach

@ Critical Lemma of Neon2: n only needs to be m small, and the
approximation error won't mess up the eigenvectors solver.

@ In general, when you have some in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?

@ This is the “stability analysis” of optimization algorithms, you can not
learn it in any course (it is very hard).

@ But you should know the answer: In general, the errors won't mess up
the optimization algorithms (at least for gradient descent, mirror
descent and accelerated gradient descent via linear coupling).
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Non convex optimization: The second approach

@ Find a point x such that:

Yuanzhi Li (CMU) CMU Random Date 30 /31



Non convex optimization: The second approach

@ Find a point x such that:
o |VF(x)|2<e.
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Non convex optimization: The second approach

@ Find a point x such that:

o |VF(x)|2<e.
o V2F(x) > —6l.
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Non convex optimization: The second approach

@ Find a point x such that:
o |VF(x)|2<e.
o V2f(x) = -dl.
° Supppse f is non-negative and the initial point x
f(x™*) <1, then

Mt satisfies:
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@ Find a point x such that:
o |VF(x)|2<e.
o V2f(x) = —6l.
° Supppse f is non-negative and the initial point x
f(x™*) <1, then
@ The second approach (Neon2) achieves the goal within: (ignoring
poly(, B) factors)

Mt satisfies:
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@ Find a point x such that:
o |VF(x)|2<e.
o V2f(x) = —6l.
° Supppse f is non-negative and the initial point x
f(x™*) <1, then
@ The second approach (Neon2) achieves the goal within: (ignoring
poly(, B) factors)
° O(ﬁ) + 0(53—15) many gradient evaluations of f.

Mt satisfies:
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Non convex optimization: The second approach

Find a point x such that:

o |VF(x)|2<e.

o V2f(x) = —6l.
Suppose f is non-negative and the initial point x
f(x™*) <1, then
The second approach (Neon?2) achieves the goal within: (ignoring
poly(, B) factors)

° O(ﬁ) + 0(53—15) many gradient evaluations of f.

Mt satisfies:

This is essentially the only theorem you need to know for general
non-convex optimization problems.
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Non convex optimization: Non-general problems?

@ However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f(x).
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@ We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.
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@ According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

@ We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

@ You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:
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rarely given as a general problem: min f(x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

@ We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of £, and we can
say much more than just finding a local minima.
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Non convex optimization: Non-general problems?

@ However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f(x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

@ We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of £, and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.
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