
Introduction to non-convex optimization

Yuanzhi Li

Assistant Professor, Carnegie Mellon University

Random Date

Yuanzhi Li (CMU) CMU Random Date 1 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).

PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).

Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).

High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).

Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).

Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

A bit history of the speaker

Current name: Yuanzhi Li.

Previously used Names: Nan.

Current Age: 27.

Previous ages: from 0 to 26.

Current Position: First year Assistant Professor.

Previous positions:

Postdoc (Stanford).
PhD (Princeton).
Bachelor(Tsinghua).
High school + middle school(The experimental school attached to
Beijing Normal University).
Elementary School(No.1 Fucheng Elementary School).
Kindergarten(Shuguang Kindergarten).

Yuanzhi Li (CMU) CMU Random Date 2 / 31

Declare

This lecture is based on the paper “Neon2” by Zeyuan Allen-Zhu and
myself (https://arxiv.org/abs/1711.06673) . Please do distribute.

Yuanzhi Li (CMU) CMU Random Date 3 / 31

Convex optimization

Where is the Godzilla?

Weight of the Godzilla: The smoothness / strong convexity.
To find the Godzilla: follow the (negative) gradient direction.

Yuanzhi Li (CMU) CMU Random Date 4 / 31

Convex optimization

Where is the Godzilla?

Weight of the Godzilla: The smoothness / strong convexity.
To find the Godzilla: follow the (negative) gradient direction.

Yuanzhi Li (CMU) CMU Random Date 4 / 31

Convex optimization

Where is the Godzilla?

Weight of the Godzilla: The smoothness / strong convexity.

To find the Godzilla: follow the (negative) gradient direction.

Yuanzhi Li (CMU) CMU Random Date 4 / 31

Convex optimization

Where is the Godzilla?

Weight of the Godzilla: The smoothness / strong convexity.
To find the Godzilla: follow the (negative) gradient direction.

Yuanzhi Li (CMU) CMU Random Date 4 / 31

Convex optimization

Where is the Godzilla?

Weight of the Godzilla: The smoothness / strong convexity.
To find the Godzilla: follow the (negative) gradient direction.

Yuanzhi Li (CMU) CMU Random Date 4 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Where are the Godzillas?

Each Godzilla defines a local minima.

The “heaviest” Godzilla: The global minima.

Non-convex optimization: Can we find these Godzillas?

Yuanzhi Li (CMU) CMU Random Date 5 / 31

Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.

Yuanzhi Li (CMU) CMU Random Date 6 / 31

Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.

Yuanzhi Li (CMU) CMU Random Date 6 / 31

Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.

Yuanzhi Li (CMU) CMU Random Date 6 / 31

Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.

Yuanzhi Li (CMU) CMU Random Date 6 / 31

Non convex optimization

Naive approach: Follow the (negative) gradient direction?

Might not be able to find a single one!

These are “saddle points”.

In fact, in high dimension, one can construct a function where
gradient descent almost always stucks at a saddle point.

Yuanzhi Li (CMU) CMU Random Date 6 / 31

Non convex optimization: The goals

Goal 1: Find at least one Godzilla, as fast as possible.

Goal 2: Find the “heaviest” Godzilla.

Goal 1 can be done efficiently (the focus of this lecture).

Goal 2 is in general hard, but possible in some settings (beyond this
lecture, come to my course next semester if you want to know more).

Yuanzhi Li (CMU) CMU Random Date 7 / 31

Non convex optimization: The goals

Goal 1: Find at least one Godzilla, as fast as possible.

Goal 2: Find the “heaviest” Godzilla.

Goal 1 can be done efficiently (the focus of this lecture).

Goal 2 is in general hard, but possible in some settings (beyond this
lecture, come to my course next semester if you want to know more).

Yuanzhi Li (CMU) CMU Random Date 7 / 31

Non convex optimization: The goals

Goal 1: Find at least one Godzilla, as fast as possible.

Goal 2: Find the “heaviest” Godzilla.

Goal 1 can be done efficiently (the focus of this lecture).

Goal 2 is in general hard, but possible in some settings (beyond this
lecture, come to my course next semester if you want to know more).

Yuanzhi Li (CMU) CMU Random Date 7 / 31

Non convex optimization: The goals

Goal 1: Find at least one Godzilla, as fast as possible.

Goal 2: Find the “heaviest” Godzilla.

Goal 1 can be done efficiently (the focus of this lecture).

Goal 2 is in general hard, but possible in some settings (beyond this
lecture, come to my course next semester if you want to know more).

Yuanzhi Li (CMU) CMU Random Date 7 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?

You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;

Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;

Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:

Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: Before going to the math

Where do we use non-convex optimization? Why *** do we need to
learn it?
You didn’t need to learn it – at least when it was ten years ago.

The problems solved in practice, especially in machine
learning/statistics, are mostly convex.

Linear regression, logistic regression;
Kernel methods;
Linear programming, semi-definite programming, SOS (Sum Of
Squares programming);

But now, they are mostly non-convex, mainly for one reason:
Deep learning / Neural networks.

Non-convex landscape:

What can we say in this regime?

Yuanzhi Li (CMU) CMU Random Date 8 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

We start with the definitions: smoothness, hessian Lipschitzness, local
minima, saddle points etc.

Given a second-order differentiable function f ∶ Rd
→ R:

We can do a local taylor expansion of the function around any point x :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ + 1
2τ

⊺
∇

2f (x)τ ±O(∥τ∥32). ∥ ∗ ∥2 is the
Euclidean norm.

Here, a = b ± c means a ∈ [b − c,b + c].

Define: Lipschitzness: L = supx∈Rd ∥∇f (x)∥2.

Lipschitzness implies: ∣f (x) − f (y)∣ ≤ L∥x − y∥2, for every x , y ∈ R.

Yuanzhi Li (CMU) CMU Random Date 9 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.

Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

Define: Smoothness β = supx∈Rd ∥∇
2f (x)∥sp. ∥ ∗ ∥sp is the spectral

norm.
Smoothness implies:

(Upper quadratic bound): For all x , y ∈ Rd ,
f (y) ≤ f (x) + ⟨∇f (x), y − x⟩+β

2
∥x − y∥22.

(Lower quadratic bound): For all x , y ∈ Rd ,
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩−β

2
∥x − y∥22.

Note: For convex f , one shall have (lower linear bound):
f (y) ≥ f (x) + ⟨∇f (x), y − x⟩.

Yuanzhi Li (CMU) CMU Random Date 10 / 31

Non convex optimization: The definition

The Lipschitzness of the hessian γ: For all x , y ∈ Rd ,
∥∇

2f (x) − ∇2f (y)∥sp ≤ γ∥x − y∥2.

This implies (important): For every x , τ ∈ Rd :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

∇
2f (x) might not be positive semi-definite (PSD)! (Convex function
⇐⇒ ∇

2f (x) is PSD for almost every x).

Yuanzhi Li (CMU) CMU Random Date 11 / 31

Non convex optimization: The definition

The Lipschitzness of the hessian γ: For all x , y ∈ Rd ,
∥∇

2f (x) − ∇2f (y)∥sp ≤ γ∥x − y∥2.

This implies (important): For every x , τ ∈ Rd :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

∇
2f (x) might not be positive semi-definite (PSD)! (Convex function
⇐⇒ ∇

2f (x) is PSD for almost every x).

Yuanzhi Li (CMU) CMU Random Date 11 / 31

Non convex optimization: The definition

The Lipschitzness of the hessian γ: For all x , y ∈ Rd ,
∥∇

2f (x) − ∇2f (y)∥sp ≤ γ∥x − y∥2.

This implies (important): For every x , τ ∈ Rd :

f (x + τ) = f (x) + ⟨∇f (x), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

∇
2f (x) might not be positive semi-definite (PSD)! (Convex function
⇐⇒ ∇

2f (x) is PSD for almost every x).

Yuanzhi Li (CMU) CMU Random Date 11 / 31

Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f : ∇f (x) = 0 ⇐⇒ x is the global minima (e.g.
f (x) = miny∈Rd f (y)).

What about non-convex functions? ∇f (x) = 0 implies?

Global minima, local minima, saddle points.

Yuanzhi Li (CMU) CMU Random Date 12 / 31

Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f : ∇f (x) = 0 ⇐⇒ x is the global minima (e.g.
f (x) = miny∈Rd f (y)).

What about non-convex functions? ∇f (x) = 0 implies?

Global minima, local minima, saddle points.

Yuanzhi Li (CMU) CMU Random Date 12 / 31

Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f : ∇f (x) = 0 ⇐⇒ x is the global minima (e.g.
f (x) = miny∈Rd f (y)).

What about non-convex functions? ∇f (x) = 0 implies?

Global minima, local minima, saddle points.

Yuanzhi Li (CMU) CMU Random Date 12 / 31

Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f : ∇f (x) = 0 ⇐⇒ x is the global minima (e.g.
f (x) = miny∈Rd f (y)).

What about non-convex functions? ∇f (x) = 0 implies?

Global minima, local minima, saddle points.

Yuanzhi Li (CMU) CMU Random Date 12 / 31

Non convex optimization: The property

We proceed to define local minima, saddle points etc.

For convex function f : ∇f (x) = 0 ⇐⇒ x is the global minima (e.g.
f (x) = miny∈Rd f (y)).

What about non-convex functions? ∇f (x) = 0 implies?

Global minima, local minima, saddle points.

Yuanzhi Li (CMU) CMU Random Date 12 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The property

Non-convex landscape:

local minima (second-order local minima):

∇f (x) = 0 and ∇
2f (x) is PSD (positive semi-definite, i.e. ∇2f (x) ⪰ 0).

saddle point:

∇f (x) = 0 and ∇
2f (x) is not PSD.

There exists a v ∈ Rd such that v⊺∇2f (x)v < 0.

Yuanzhi Li (CMU) CMU Random Date 13 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.

∇
2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The goal

What do we want when optimizing a non-convex function f ?

Finding the global minima is in general impossible (NP-hard) for
non-convex functions.

Goal: Given a function f ∶ Rd
→ R, can we find a local minima

efficiently?

Given a function f ∶ Rd
→ R that is β-smooth and γ- Lipschitz

Hessian, for every ε, δ > 0, find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

In time poly(1/ε,1/δ, γ, β,d).

Yuanzhi Li (CMU) CMU Random Date 14 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.

∇
2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):

Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .

If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .
If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.

Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .
If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that
∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

How do we do it?

Approach 1 (Algorithm Forklore):
Do gradient descent, until we arrive at a point x ′ with ∥∇f (x ′)∥2 ≤ ε.

Simple observation: For every β-smooth f ,

f (x − η∇f (x)) ≤ f (x) − η∥∇f (x)∥22 + η
2β2

∥∇f (x)∥22

Gradient large Ô⇒ decrease function value using gradient descent.

Check if ∇2f (x ′) ⪰ −δI .
If not, find a unit vector v such that v⊺∇2f (x ′)v ≤ −δ. Can be done
efficiently via eigenvectors solver.
Hessian descent: For a step size η, if f (x ′ + ηv) ≤ f (x ′ − ηv), go to
x ′′ = x ′ + ηv . Otherwise go to x ′′ = x ′ − ηv .

Repeat to gradient descent.

Yuanzhi Li (CMU) CMU Random Date 15 / 31

Non convex optimization: Hessian descent

Recall: (important property): For every x ′, τ :

f (x ′ + τ) = f (x ′) + ⟨∇f (x ′), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

Critical observation:

1

2
(f (x ′ + ηv) + f (x ′ − ηv)) ≤ f (x ′) +

η2

2
v⊺∇2f (x ′)v + γη3

≤ f (x ′) −
η2δ

2
+ γη3

Taking η = δ
4γ , the function value is decreased by at least δ3

64γ2
:

f (x ′′) ≤ f (x ′) − δ3

64γ2
.

In other words, a hessian descent would decrease function value by
Ω(δ3), when the negative eigenvalue of the hessian is ≤ −δ: The more
non-convex, the hessian descent works better.

Yuanzhi Li (CMU) CMU Random Date 16 / 31

Non convex optimization: Hessian descent

Recall: (important property): For every x ′, τ :

f (x ′ + τ) = f (x ′) + ⟨∇f (x ′), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

Critical observation:

1

2
(f (x ′ + ηv) + f (x ′ − ηv)) ≤ f (x ′) +

η2

2
v⊺∇2f (x ′)v + γη3

≤ f (x ′) −
η2δ

2
+ γη3

Taking η = δ
4γ , the function value is decreased by at least δ3

64γ2
:

f (x ′′) ≤ f (x ′) − δ3

64γ2
.

In other words, a hessian descent would decrease function value by
Ω(δ3), when the negative eigenvalue of the hessian is ≤ −δ: The more
non-convex, the hessian descent works better.

Yuanzhi Li (CMU) CMU Random Date 16 / 31

Non convex optimization: Hessian descent

Recall: (important property): For every x ′, τ :

f (x ′ + τ) = f (x ′) + ⟨∇f (x ′), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

Critical observation:

1

2
(f (x ′ + ηv) + f (x ′ − ηv)) ≤ f (x ′) +

η2

2
v⊺∇2f (x ′)v + γη3

≤ f (x ′) −
η2δ

2
+ γη3

Taking η = δ
4γ , the function value is decreased by at least δ3

64γ2
:

f (x ′′) ≤ f (x ′) − δ3

64γ2
.

In other words, a hessian descent would decrease function value by
Ω(δ3), when the negative eigenvalue of the hessian is ≤ −δ: The more
non-convex, the hessian descent works better.

Yuanzhi Li (CMU) CMU Random Date 16 / 31

Non convex optimization: Hessian descent

Recall: (important property): For every x ′, τ :

f (x ′ + τ) = f (x ′) + ⟨∇f (x ′), τ⟩ +
1

2
τ⊺∇2f (x)τ ± γ∥τ∥32

Critical observation:

1

2
(f (x ′ + ηv) + f (x ′ − ηv)) ≤ f (x ′) +

η2

2
v⊺∇2f (x ′)v + γη3

≤ f (x ′) −
η2δ

2
+ γη3

Taking η = δ
4γ , the function value is decreased by at least δ3

64γ2
:

f (x ′′) ≤ f (x ′) − δ3

64γ2
.

In other words, a hessian descent would decrease function value by
Ω(δ3), when the negative eigenvalue of the hessian is ≤ −δ: The more
non-convex, the hessian descent works better.

Yuanzhi Li (CMU) CMU Random Date 16 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.

∇
2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The first approach

Recall the goal: find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then:

The first approach achieves the goal within: (ignoring poly(γ, β)
factors)

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Yuanzhi Li (CMU) CMU Random Date 17 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.

Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.

Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Recall: the first approach needs:

O (
1
ε2
) many gradient evaluations: gradient descent.

O (
1
δ3
) many eigenvectors solvers for the hessian matrix: hessian

descent.

Can we do it faster?

Yes, we can reduce the number of gradient evaluations and
completely get rid of eigenvectors solvers.

Algorithm Neon2.

Approach:

Reducing the number of gradient evaluations at the cost of increasing
the number of hessian eigenvectors solvers.
Then reducing the number of hessian eigenvectors solvers at the cost of
increasing the number of gradient evaluations.
Sounds fishy? Loopy argument? We shall see.

Yuanzhi Li (CMU) CMU Random Date 18 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

Basic idea: What if f is a convex function? Can we reduce the
number of gradient evaluations to find a point x with ∥∇f (x)∥2 ≤ ε?

Yes, we can reduce the number of gradient evaluations.

Tool: Accelerated gradient descent (AGD). [Nesterov 1983]

Recall: AGD finds an x with f (x) ≤ miny∈Rd f (y) + ε2:

In O (
1
ε
) many gradient evaluations for any smooth, convex function f .

In O (
1√
α

log 1
ε
) many gradient evaluations if f is α-strongly convex.

By the 1-smoothness of f , f (x) ≤ miny∈Rd f (y) + ε2 implies that
∥∇f (x)∥2 ≤ ε.

For smooth, convex function f : AGD can find a point x with
∥∇f (x)∥2 ≤ ε in O (

1
ε
) iterations.

Recall: gradient descent needs O (
1
ε2
) iterations.

Yuanzhi Li (CMU) CMU Random Date 19 / 31

Non convex optimization: The second approach

For non-convex function, we can do:

(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

For non-convex function, we can do:
(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

For non-convex function, we can do:
(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

For non-convex function, we can do:
(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

For non-convex function, we can do:
(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

For non-convex function, we can do:
(Truly non-convex): If ∇2f (x) has a very negative eigenvalue, then we
do a hessian descent.

(Approximately convex): ∇2f (x) only contains small negative
eigenvalues, can we still do accelerated gradient descent?

Yes, we can do it.

Yuanzhi Li (CMU) CMU Random Date 20 / 31

Non convex optimization: The second approach

General plan: Each iteration, we first find the eigenvector of ∇2f (x)
with the most negative eigenvalue.

If the eigenvalue is too negative: do hessian descent.
Otherwise, do accelerated gradient descent.

In this way, we can reduce the number of gradient evaluations at the
cost of increasing the number of hessian eigenvectors solvers.

Yuanzhi Li (CMU) CMU Random Date 21 / 31

Non convex optimization: The second approach

General plan: Each iteration, we first find the eigenvector of ∇2f (x)
with the most negative eigenvalue.

If the eigenvalue is too negative: do hessian descent.

Otherwise, do accelerated gradient descent.

In this way, we can reduce the number of gradient evaluations at the
cost of increasing the number of hessian eigenvectors solvers.

Yuanzhi Li (CMU) CMU Random Date 21 / 31

Non convex optimization: The second approach

General plan: Each iteration, we first find the eigenvector of ∇2f (x)
with the most negative eigenvalue.

If the eigenvalue is too negative: do hessian descent.
Otherwise, do accelerated gradient descent.

In this way, we can reduce the number of gradient evaluations at the
cost of increasing the number of hessian eigenvectors solvers.

Yuanzhi Li (CMU) CMU Random Date 21 / 31

Non convex optimization: The second approach

General plan: Each iteration, we first find the eigenvector of ∇2f (x)
with the most negative eigenvalue.

If the eigenvalue is too negative: do hessian descent.
Otherwise, do accelerated gradient descent.

In this way, we can reduce the number of gradient evaluations at the
cost of increasing the number of hessian eigenvectors solvers.

Yuanzhi Li (CMU) CMU Random Date 21 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

Let us now do the calculation for the exact numbers:

For simplicity, I will assume β = γ = 1.

Taking δ1 =
1

100ε
0.5 (the “threshold” of large v.s. small for the

negative eigenvalue), then:

If ∇2f (x0) ⪰ −δ1I , we do accelerated gradient descent.

Otherwise, we do hessian descent, which (recall!) will decrease
function value by Ω(δ31) = Ω(ε1.5).

So, we can do at most O (
1
ε1.5

) many iterations of the hessian descent.

Yuanzhi Li (CMU) CMU Random Date 22 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

The magic step for AGD when ∇
2f (x0) ⪰ −δ1I :

Define function g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x), where

hx0,δ1(x) = 4 × 1∥x−x0∥2≥δ1(∥x − x0∥2 − δ1)
2.

Critical observation: g(x) is δ1 strongly convex.

When ∥x − x0∥2 ≤ δ1: Using the ∇2f (x) ⪰ −2δ1I and the strong
convexity of 4δ1∥x − x0∥

2
2.

When ∥x − x0∥2 ≥ δ1: Using the strong convexity of hx0,δ1(x).

Yuanzhi Li (CMU) CMU Random Date 23 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x).

Now, use accelerated gradient descent on the δ1-strongly convex
function g , we can find a point x1 with

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

in O (
1√
δ1

log 1
ε) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 24 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:

∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:

∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:

∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:

∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:

∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:
∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:
∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

Recall: g(x) = f (x) + 4δ1∥x − x0∥
2
2 + hx0,δ1(x)

g(x1) ≤ g(x0) + ε
2;

∥∇g(x1)∥2 ≤ ε
2.

Two cases for x1:
∥x1 − x0∥2 ≥ δ1, then

f (x1) ≤ g(x1) − 4δ31 ≤ f (x0) −Ω(ε1.5): Decrease function value.

∥x1 − x0∥2 ≤ δ1, then ∥∇f (x1)∥2 ≤ ∥∇g(x1)∥2 + 8δ21 ≤ ε: Gradient is
small.

Yuanzhi Li (CMU) CMU Random Date 25 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).
Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).
Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).

Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).
Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).
Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

What did we do?

We use 1 hessian eigenvector solver and Õ (
1√
δ1
) = Õ (

1
ε0.25

) gradient

evaluations, we obtain at least one of the following:

Decrease the function value by at least Ω(ε1.5) (Can happen for at
most O (

1
ε1.5

) times).
Find a point x with ∥∇f (x)∥2 ≤ ε.

In total, we can find a point x with ∥∇f (x)∥2 ≤ ε in Õ (
1

ε1.75
) gradient

evaluations and O (
1
ε1.5

) calls of hessian eigenvectors solver.

Recall: Gradient descent needs Õ (
1
ε2
) gradient evaluations.

Yuanzhi Li (CMU) CMU Random Date 26 / 31

Non convex optimization: The second approach

The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (

1
ε1.5

) calls of hessian
eigenvectors solver.

Goal of each hessian eigenvectors solver: Suppose there is a unit
vector v with v⊺∇2f (x)v ≤ −δ1, we need to find a unit vector w with

w⊺
∇

2f (x)w ≤ −0.9δ1

Can we do it within O (
1√
δ1
) = O (

1
ε0.25

) gradient evaluations?

Yuanzhi Li (CMU) CMU Random Date 27 / 31

Non convex optimization: The second approach

The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (

1
ε1.5

) calls of hessian
eigenvectors solver.

Goal of each hessian eigenvectors solver: Suppose there is a unit
vector v with v⊺∇2f (x)v ≤ −δ1, we need to find a unit vector w with

w⊺
∇

2f (x)w ≤ −0.9δ1

Can we do it within O (
1√
δ1
) = O (

1
ε0.25

) gradient evaluations?

Yuanzhi Li (CMU) CMU Random Date 27 / 31

Non convex optimization: The second approach

The last piece: Reducing the call to hessian eigenvectors solver to
gradient evaluations: Recall we need in total O (

1
ε1.5

) calls of hessian
eigenvectors solver.

Goal of each hessian eigenvectors solver: Suppose there is a unit
vector v with v⊺∇2f (x)v ≤ −δ1, we need to find a unit vector w with

w⊺
∇

2f (x)w ≤ −0.9δ1

Can we do it within O (
1√
δ1
) = O (

1
ε0.25

) gradient evaluations?

Yuanzhi Li (CMU) CMU Random Date 27 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: Last piece of Neon2:

How to find eigenvectors of a matrix M?

Power method: z0 is a random unit vector, update zt+1 =
Mzt
∥Mzt∥2

.

Power method finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in

O (
1
δ1
) iterations of computing M times a vector.

Acceleration: Lanzos method/ Chevbyshev polynomial methods.

Finds unit vector w with w⊺
∇

2f (x)w ≤ −0.9δ1 in O (
1√
δ1
) iterations

of computing M times a vector.

Computing M times a vector? How to compute ∇2f (x)z for a vector
z in our case? Easy:

∇
2f (x)z = limη→0

∇f (x+ηz)−∇f (x)
η : Only two gradient evaluations for a

sufficiently small η.

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

Yuanzhi Li (CMU) CMU Random Date 28 / 31

Non convex optimization: The second approach

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

In general, when you have some errors in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?

This is the “stability analysis” of optimization algorithms, you can not
learn it in any course (it is very hard).

But you should know the answer: In general, the errors won’t mess up
the optimization algorithms (at least for gradient descent, mirror
descent and accelerated gradient descent via linear coupling).

Yuanzhi Li (CMU) CMU Random Date 29 / 31

Non convex optimization: The second approach

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

In general, when you have some errors in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?

This is the “stability analysis” of optimization algorithms, you can not
learn it in any course (it is very hard).

But you should know the answer: In general, the errors won’t mess up
the optimization algorithms (at least for gradient descent, mirror
descent and accelerated gradient descent via linear coupling).

Yuanzhi Li (CMU) CMU Random Date 29 / 31

Non convex optimization: The second approach

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

In general, when you have some errors in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?

This is the “stability analysis” of optimization algorithms, you can not
learn it in any course (it is very hard).

But you should know the answer: In general, the errors won’t mess up
the optimization algorithms (at least for gradient descent, mirror
descent and accelerated gradient descent via linear coupling).

Yuanzhi Li (CMU) CMU Random Date 29 / 31

Non convex optimization: The second approach

Critical Lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the
approximation error won’t mess up the eigenvectors solver.

In general, when you have some errors in the internal computation of
an optimization algorithm, would it mess up the entire algorithm?

This is the “stability analysis” of optimization algorithms, you can not
learn it in any course (it is very hard).

But you should know the answer: In general, the errors won’t mess up
the optimization algorithms (at least for gradient descent, mirror
descent and accelerated gradient descent via linear coupling).

Yuanzhi Li (CMU) CMU Random Date 29 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.

∇
2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: The second approach

Find a point x such that:

∥∇f (x)∥2 ≤ ε.
∇

2f (x) ⪰ −δI .

Suppose f is non-negative and the initial point x init satisfies:
f (x init) ≤ 1, then

The second approach (Neon2) achieves the goal within: (ignoring
poly(γ, β) factors)

Õ (
1

ε1.75
) + O (

1
δ3.5

) many gradient evaluations of f .

This is essentially the only theorem you need to know for general
non-convex optimization problems.

Yuanzhi Li (CMU) CMU Random Date 30 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

Non convex optimization: Non-general problems?

However, unlike convex optimization, non-convex optimization is
rarely given as a general problem: min f (x).

According to Sanjeev Arora: Optimization algorithm is not the correct
language for non-convex optimization.

We should use the special structure properties of f (for example f is a
given by a neural network) to optimize it faster, instead of purely
relying on optimization algorithms.

You have learnt Neon2, the only optimization algorithm you need to
know for general non-convex optimization, which is:

1% of non-convex optimization :)

The rest 99% relies on understanding the structure of f , and we can
say much more than just finding a local minima.

One example (further reading): Optimizing non-convex, non-smooth
ReLU neural networks via SGD to global minima: A Convergence
Theorem of Deep Learning via Over-parameterization.

Yuanzhi Li (CMU) CMU Random Date 31 / 31

