
Numerical Linear Algebra Primer

Ryan Tibshirani
Convex Optimization 10-725

Last time: quasi-Newton methods

Consider the problem
min
x

f(x)

with f convex, twice differentiable, dom(f) = Rn. Generic form of
quasi-Newton method: start with x(0) ∈ Rn, and repeat:

x(k) = x(k−1) − tkC(k−1)x(k−1), k = 1, 2, 3, . . .

where C(k−1) ≈ (∇2f(x(k−1)))−1, an approximation to the inverse
Hessian at x(k−1). Step sizes chosen by backtracking. Key: C(0) is
easily computed, and C(k−1) is easily updated from C(k−2), k ≥ 2

• SR1: rank 1 update for Hessian, use SMW for inverse Hessian

• DFP: rank 2 update for inverse Hessian, use SMW for Hessian

• BFGS: reverse roles of Hessian and inverse Hessian in DFP

• LBFGS: limited memory version of BFGS, very popular

2

Outline

Today:

• Flops for basic operations

• Solving linear systems

• Matrix factorizations

• Sensitivity analysis

• Indirect methods

3

Complexity of basic operations

Flop (floating point operation):

• One addition, subtraction, multiplication, division of floating
point numbers

• Serves as a basic unit of computation

• We are interested in rough, not exact flop counts

Vector-vector operations: given a, b ∈ Rn:

• Addition, a+ b: costs n flops

• Scalar multiplication, c · a: costs n flops

• Inner product, aT b: costs 2n flops

Flops do not tell the whole story: setting every element of a to 1
costs 0 flops

4

Matrix-vector product: given A ∈ Rm×n, b ∈ Rn, consider Ab:

• In general: costs 2mn flops

• For s-sparse A: costs 2s flops

• For k-banded A ∈ Rn×n: costs 2nk flops

• For A =
∑r

i=1 uiv
T
i ∈ Rm×n: costs 2r(m+ n) flops

• For A ∈ Rn×n a permutation matrix: costs 0 flops

Matrix-matrix product: for A ∈ Rm×n, B ∈ Rn×p, consider AB:

• In general: costs 2mnp flops

• For s-sparse A: costs 2sp flops (less if B is also sparse)

Matrix-matrix-vector product: for A ∈ Rm×n, B ∈ Rn×p, c ∈ Rp,
consider ABc:

• Costs 2np+ 2mn flops if done properly (or 2mnp+ 2mp if
done improperly!)

5

Solving linear systems

For nonsingular A ∈ Rn×n, consider solving linear system Ax = b:

• In general: costs about n3 flops—we’ll see more on this later

• For diagonal A: costs n flops

x = (b1/a1, . . . , bn/an)

• For lower triangular A (Aij = 0, j > i): costs about n2 flops

x1 = b1/A11

x2 = (b2 −A21x1)/A22

...

xn = (bn −An,n−1xn−1 · · · −An1x1)/Ann

This is called forward substitution

• For upper triangular A: costs about n2, by back substitution

6

• For s-sparse A, often costs � n3 flops, but exact (worse-case)
flop counts are not known for abitrary sparsity structures

• For k-banded A: costs about nk2 flops—more later

• For orthogonal A: we have A−1 = AT , so x = AT b costs 2n2

flops

• For permutation A: again A−1 = AT , so x = AT b costs 0
flops. Example:

A =

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 and A−1 = AT =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

7

Matrix factorizations

As you’ve probably learned, we can solve Ax = b by, e.g., Gaussian
elimination. More typically, it is useful to instead factorize A:

A = A1A2 · · ·Ak

and then compute x = A−1k · · ·A
−1
2 A−11 b. Usually k = 2 or 3, and:

• Computing the factorization is expensive, about n3 flops

• Applying A−11 , . . . , A−1k is cheaper, about n2 flops

• This is because A1, . . . , Ak are structured: either orthogonal,
triangular, diagonal, or permutation matrices

Note: this is especially useful when we will be solving many linear
systems in A. To solve t linear systems, after initial factorization,
costs about tn2

8

QR decomposition

Any A ∈ Rm×n, with m ≥ n, has a QR decomposition:

A = QR

with Q ∈ Rm×n orthogonal (i.e., QTQ = I), and R ∈ Rn×n upper
triangular. Can compute this in 2mn2 − n3/3 flops

Property: number of nonzero diagonal elements of R is the rank of
A, corresponding columns of Q span col(A)

Assuming A is nonsingular and square, we can now solve Ax = b:

• Compute y = QT b, in 2n2 flops

• Solve Rx = y, in n2 flops (back substitution)

So solving costs 3n2 flops

9

Cholesky decomposition

More specialized, any A ∈ Sn++, has a Cholesky decomposition:

A = LLT

with L ∈ Rn×n lower triangular. Can compute this in n3/3 flops.
(Could compute Cholesky from QR, but this would be inefficient)

From Cholesky factors, we can solve Ax = b:

• Compute y = L−1b, in n2 flops (forward substitution)

• Compute x = (LT)−1y, in n2 flops (back substitution)

So solving costs 2n2 flops

An important extension for k-banded A: computing Cholesky takes
nk2/4 flops, and solving takes 2nk flops

10

Least squares problems and Cholesky

Given y ∈ Rn, X ∈ Rn×p, consider the least squares problem:

min
β∈Rp

‖y −Xβ‖22

Assuming X has full column rank, solution is β̂ = (XTX)−1XT y.
How expensive?

• Compute XT y, in 2pn flops

• Compute XTX, in p2n flops

• Compute Cholesky of XTX, in p3/3 flops

• Solve (XTX)β = XT y, in 2p2 flops

Thus in total, about np2 + p3/3 flops (or np2 flops if n� p)

11

Least squares problems and QR

Same problem, now with QR. Key identity:

‖x‖22 = ‖P Tx‖22 = ‖QTx‖22 + ‖Q̃Tx‖22

where P = [Q Q̃] ∈ Rn×n is orthogonal. Applied to x = y −Xβ:

‖y −Xβ‖22 = ‖QT y −Rβ‖22 + ‖Q̃T y‖22

Second term does not depend on β. So for least squares solution:

• Compute X = QR, in 2np2 − p3/3 flops

• Compute QT y, in 2pn flops

• Solve Rβ = QT y, in p2 flops (back substitution)

Thus in total, about 2np2 − p3/3 flops (or 2np2 flops if n� p)

12

Linear systems and stability

Consider first the linear system Ax = b, for nonsingular A ∈ Rn×n.
The singular value decomposition (SVD) of A:

A = UΣV T

where U, V ∈ Rn×n are orthogonal, and Σ ∈ Rn×n is diagonal with
elements σ1 ≥ · · · ≥ σn > 0

Even if A is full rank, it could be “near” a singular matrix B, i.e.,

dist(A,Rk) = min
rank(B)=k

‖A−B‖op

could be small, for some k < n. An easy SVD analysis shows that
dist(A,Rk) = σk+1. If this is small, then solving x = A−1b could
pose problems

13

Sensitivity analysis

Precise sensitivity analysis: fix some F ∈ Rn×n, f ∈ Rn. Solve the
“perturbed linear system”:

(A+ εF)x(ε) = (b+ εf)

Theorem: The solution to the perturbed system, abbreviating
x = x(0), satisfies

‖x(ε)− x‖22
‖x‖2

≤ κ(A)(ρA + ρb) +O(ε2)

where κ(A) = σ1/σn is the condition number of A, and ρA, ρb
are the relative errors ρA = |ε|‖F‖op/‖A‖op, ρb = |ε|‖f‖2/‖b‖2

14

Proof:

• By implicit differentiation,

x′(0) = A−1(f − Fx)

• Using a Taylor expansion around 0,

x(ε) = x+ εA−1(f − Fx) +O(ε2)

• Rearranging gives

‖x(ε)− x‖2
‖x‖2

≤ |ε|‖A−1‖op
(
‖f‖2
‖x‖2

+ ‖F‖op
)

+O(ε2)

Multiplying and dividing by ‖A‖op proves the result, since
κ(A) = ‖A‖op‖A−1‖op

15

Cholesky versus QR for least squares

Linear systems: worse conditioning means great sensitivity. What
about for least squares problems?

min
β∈Rp

‖y −Xβ‖22

• Recall Cholesky solves XTXβ = XT y. Hence we know that
sensitivity scales with κ(XTX) = κ(X)2

• Meanwhile, QR operates on X, never forms XTX, and can
show that sensitivity scales with κ(X) + ρLS · κ(X)2, where
ρLS = ‖y −Xβ̂‖22

Summary: Cholesky is cheaper (and uses less memory), but QR is
more stable when ρLS is small and κ(X) is large

16

Indirect methods

So far we’ve been talking about direct methods for linear systems.
These return the exact solution (in perfect computing environment)

Indirect methods (iterative methods) produce x(k), k = 1, 2, 3, . . .
converging to a solution x. Most often used for very large, sparse
systems

When to use direct versus indirect? Basic first-order advice (due to
Tim Davis): if a problem can fit into memory, use a direct method;
otherwise use an indirect method

17

Jacobi and Gauss-Seidl

Given A ∈ Sn++, two basic iterative approaches for solving Ax = b:

• Jacobi iterations: initialize x(0) ∈ Rn, repeat

x
(k)
i =

(
bi −

∑
j 6=i

Aijx
(k−1)
j

)
/Aii, i = 1, . . . , n

for k = 1, 2, 3, . . .

• Gauss-Seidl iterations: initialize x(0) ∈ Rn, repeat

x
(k)
i =

(
bi −

∑
j<i

Aijx
(k)
j −

∑
j>i

Aijx
(k−1)
j

)
/Aii, i = 1, . . . , n

for k = 1, 2, 3, Gauss-Seidl uses most recent info possible

• Gauss-Seidl iterations always converge, but Jacobi iterations
do not

18

Gradient descent

As A ∈ Sn++, note that the function

φ(x) =
1

2
xTAx− bTx

is convex, and its minimizer satisfies 0 = ∇φ(x) = Ax− b. That
is, minimizing φ above is equivalent to solving Ax = b

So let’s just apply good old gradient descent: initialize x(0), repeat:

x(k) = x(k−1) + tkr
(k−1), where r(k−1) = b−Ax(k−1)

for k = 1, 2, 3, What step sizes to use? Abbreviate x = x(k−1),
r = r(k−1), best choice is

tk = argmin
t≥0

φ(x+ tr) =
rT r

rTAr

19

Convergence analysis

As φ is strongly convex, gradient descent has linear convergence.
Can make this even more precise:

Theorem: Gradient descent with exact step sizes satisfies

‖x(k) − x‖A ≤
(√

1− κ(A)−1
)k‖x(0) − x‖A

where ‖x‖2A = xTAx and κ(A) = λ1(A)/λn(A) is the condition
number of A

Proof: standard (similar to our strong convexity analysis)

Important note: the contraction factor depends adversely on κ(A).
To get ‖x(k) − x‖A ≤ ε‖x(0) − x‖A, we require O(κ(A) log(1/ε))
iterations

20

Conjugate gradient

For large κ(A), the contours of φ are elongated ellipsoids. Roughly
put, gradient descent will spend a lot of time traversing back and
forth “across the valley”, rather than “down the valley”

Said differently, there is not enough diversity in the directions r(k)

used by gradient descent

Conjugate gradient method: very clever idea due to Hestenes and
Stiefel (1952). Replace gradient descent directions r(k) with

p(k) ∈ span{Ap(1), . . . , Ap(k−1)}⊥

We can see these directions are constructed to be diverse. Note:
we say p, q are A-conjugate provided pTAq = 0. This explains the
name

21

Intuition: for any p, as before

argmin
t≥0

φ(x+ tp) =
pT r

pTAp

Plugging this in to x(k) = x(k−1) + tkp gives

φ(x(k)) = φ(x(k−1))− 1

2

(p(k))T (r(k−1))

(p(k))TAp(k)

We see in order to make enough progress, p(k) must be sufficiently
aligned with r(k−1). Recall, we also require A-conjugacy

Turns out these two considerations are simultaneously met with

p(k) = r(k−1) + βkp
(k−1), where βk = − (p(k−1))TAr(k−1)

(p(k−1))TAp(k−1)

22

Convergence analysis

Theorem: Conjugate gradient method satisfies

‖x(k) − x‖A ≤ 2

(√
κ(A)− 1√
κ(A) + 1

)k
‖x(0) − x‖A

where as before ‖x‖2A = xTAx and κ(A) = λ1(A)/λn(A) is the
condition number of A. Further, it finds the exact solution x in
at most n iterations

Proof: interesting (modern proof invokes Chebyshev polynomials)

We see that conjugate gradient too enjoys linear convergence but
with a contraction factor that has a better dependence on κ(A):
to get ‖x(k) − x‖A ≤ ε‖x(0) − x‖A, we need O(

√
κ(A) log(1/ε))

iterations

23

Example

Comparison of iterative methods for least squares problems: 100
random instances with n = 100, p = 20

0 10 20 30 40

1e
−

12
1e

−
09

1e
−

06
1e

−
03

1e
+

00

Iteration k

S
ub

op
tim

al
ity

 fk
−

fs
ta

r

Jacobi
Gauss−Seidl
Grad descent
Conjugate grad

24

Some advanced topics

So many more interesting things to learn ...

• Updating/downdating matrix factorizations

• Sparse matrix factorizations (SuiteSparse)

• Successive over-relaxation and acceleration

• Preconditioned conjugate gradient

• Laplacian (SDD) linear systems

25

References and further reading

• S. Boyd, Lecture notes for EE 264A, Stanford University,
Winter 2014-2015

• S. Boyd and L. Vandenberghe (2004), “Convex optimization”,
Appendix C

• T. Davis (2006), “Direct methods for sparse linear systems”,
see http://faculty.cse.tamu.edu/davis/suitesparse.html

• G. Golub and C. van Loan (1996), “Matrix computations”,
Chapters 1–5, 10

• N. Vishnoi (2013), “Lx = b; Laplacian solvers and algorithmic
applications”

26

http://faculty.cse.tamu.edu/davis/suitesparse.html

