
Proximal Gradient Descent
(and Acceleration)

Ryan Tibshirani
Convex Optimization 10-725



Last time: subgradient method

Consider the problem
min
x

f(x)

with f convex, and dom(f) = Rn. Subgradient method: choose
an initial x(0) ∈ Rn, and repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . .

where g(k−1) ∈ ∂f(x(k−1)). We use pre-set rules for the step sizes
(e.g., diminshing step sizes rule)

If f is Lipschitz, then subgradient method has a convergence rate
O(1/ε2)

Upside: very generic. Downside: can be slow — addressed today

2



Outline

Today:

• Proximal gradient descent

• Convergence analysis

• ISTA, matrix completion

• Special cases

• Acceleration

3



Composite functions

Suppose
f(x) = g(x) + h(x)

• g is convex, differentiable, dom(g) = Rn

• h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be:

x+ = x− t · ∇f(x)

Recall motivation: minimize quadratic approximation to f around
x, replace ∇2f(x) by 1

t I,

x+ = argmin
z

f(x) +∇f(x)T (z − x) +
1

2t
‖z − x‖22︸ ︷︷ ︸

f̄t(z)

4



In our case f is not differentiable, but f = g + h, g differentiable.
Why don’t we make quadratic approximation to g, leave h alone?

That is, update

x+ = argmin
z

ḡt(z) + h(z)

= argmin
z

g(x) +∇g(x)T (z − x) +
1

2t
‖z − x‖22 + h(z)

= argmin
z

1

2t

∥∥z − (x− t∇g(x)
)∥∥2

2
+ h(z)

1
2t

∥∥z − (x− t∇g(x)
)∥∥2

2
stay close to gradient update for g

h(z) also make h small

5



Proximal gradient descent

Define proximal mapping:

proxh,t(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

Proximal gradient descent: choose initialize x(0), repeat:

x(k) = proxh,tk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

To make this update step look familiar, can rewrite it as

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt is the generalized gradient of f ,

Gt(x) =
x− proxh,t

(
x− t∇g(x)

)
t

6



What good did this do?

You have a right to be suspicious ... may look like we just swapped
one minimization problem for another

Key point is that proxh,t(·) has a closed-form for many important
functions h. Note:

• Mapping proxh,t(·) doesn’t depend on g at all, only on h

• Smooth part g can be complicated, we only need to compute
its gradients

Convergence analysis: will be in terms of the number of iterations,
and each iteration evaluates proxh,t(·) once (this can be cheap or
expensive, depending on h)

7



Example: ISTA

Given y ∈ Rn, X ∈ Rn×p, recall the lasso criterion:

f(β) =
1

2
‖y −Xβ‖22︸ ︷︷ ︸

g(β)

+
.

.
λ‖β‖1︸ ︷︷ ︸
h(β)

Proximal mapping is now

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖z‖1

= Sλt(β)

where Sλ(β) is the soft-thresholding operator,

[Sλ(β)]i =


βi − λ if βi > λ

0 if − λ ≤ βi ≤ λ
βi + λ if βi < −λ

, i = 1, . . . , n

8



Recall ∇g(β) = −XT (y−Xβ), hence proximal gradient update is:

β+ = Sλt
(
β + tXT (y −Xβ)

)
Often called the iterative soft-thresholding algorithm (ISTA).1 Very
simple algorithm

Example of proximal
gradient (ISTA) vs.
subgradient method
convergence curves

0 200 400 600 800 1000

0.
02

0.
05

0.
10

0.
20

0.
50

k

f−
fs

ta
r

Subgradient method
Proximal gradient

1Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”

9



Backtracking line search

Backtracking for prox gradient descent works similar as before (in
gradient descent), but operates on g and not f

Choose parameter 0 < β < 1. At each iteration, start at t = tinit,
and while

g
(
x− tGt(x)

)
> g(x)− t∇g(x)TGt(x) +

t

2
‖Gt(x)‖22

shrink t = βt, for some 0 < β < 1. Else perform proximal gradient
update

(Alternative formulations exist that require less computation, i.e.,
fewer calls to prox)

10



Convergence analysis

For criterion f(x) = g(x) + h(x), we assume:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Proximal gradient descent with fixed step size t ≤
1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

and same result holds for backtracking, with t replaced by β/L

Proximal gradient descent has convergence rate O(1/k) or O(1/ε).
Matches gradient descent rate! (But remember prox cost ...)

11



Example: matrix completion

Given a matrix Y ∈ Rm×n, and only observe entries Yij , (i, j) ∈ Ω.
Suppose we want to fill in missing entries (e.g., for a recommender
system), so we solve a matrix completion problem:

min
B

1

2

∑
(i,j)∈Ω

(Yij −Bij)2 + λ‖B‖tr

Here ‖B‖tr is the trace (or nuclear) norm of B,

‖B‖tr =

r∑
i=1

σi(B)

where r = rank(B) and σ1(X) ≥ · · · ≥ σr(X) ≥ 0 are the singular
values

12



Define PΩ, projection operator onto observed set:

[PΩ(B)]ij =

{
Bij (i, j) ∈ Ω

0 (i, j) /∈ Ω

Then the criterion is

f(B) =
1

2
‖PΩ(Y )− PΩ(B)‖2F︸ ︷︷ ︸

g(B)

+
.

.
λ‖B‖tr︸ ︷︷ ︸
h(B)

Two ingredients needed for proximal gradient descent:

• Gradient calculation: ∇g(B) = −(PΩ(Y )− PΩ(B))

• Prox function:

proxt(B) = argmin
Z

1

2t
‖B − Z‖2F + λ‖Z‖tr

13



Claim: proxt(B) = Sλt(B), matrix soft-thresholding at the level λ.
Here Sλ(B) is defined by

Sλ(B) = UΣλV
T

where B = UΣV T is an SVD, and Σλ is diagonal with

(Σλ)ii = max{Σii − λ, 0}

Proof: note that proxt(B) = Z, where Z satisfies

0 ∈ Z −B + λt · ∂‖Z‖tr

Helpful fact: if Z = UΣV T , then

∂‖Z‖tr = {UV T +W : ‖W‖op ≤ 1, UTW = 0, WV = 0}

Now plug in Z = Sλt(B) and check that we can get 0

14



Hence proximal gradient update step is:

B+ = Sλt

(
B + t

(
PΩ(Y )− PΩ(B)

))

Note that ∇g(B) is Lipschitz continuous with L = 1, so we can
choose fixed step size t = 1. Update step is now:

B+ = Sλ
(
PΩ(Y ) + P⊥Ω (B)

)
where P⊥Ω projects onto unobserved set, PΩ(B) + P⊥Ω (B) = B

This is the soft-impute algorithm2, simple and effective method for
matrix completion

2Mazumder et al. (2011), “Spectral regularization algorithms for learning
large incomplete matrices”

15



Special cases

Proximal gradient descent also called composite gradient descent,
or generalized gradient descent

Why “generalized”? This refers to the several special cases, when
minimizing f = g + h:

• h = 0: gradient descent

• h = IC : projected gradient descent

• g = 0: proximal minimization algorithm

16



Projected gradient descent

Given closed, convex set C ∈ Rn,

min
x∈C

g(x) ⇐⇒ min
x

g(x) + IC(x)

where IC(x) =

{
0 x ∈ C
∞ x /∈ C

is the indicator function of C

Hence

proxt(x) = argmin
z

1

2t
‖x− z‖22 + IC(z)

= argmin
z∈C

‖x− z‖22

That is, proxt(x) = PC(x), projection operator onto C

17



Therefore proximal gradient update step is:

x+ = PC
(
x− t∇g(x)

)
That is, perform usual gradient update and then project back onto
C. Called projected gradient descent

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

c(
)

●

●

18



Proximal minimization algorithm

Consider for h convex (not necessarily differentiable),

min
x

h(x)

Proximal gradient update step is just:

x+ = argmin
z

1

2t
‖x− z‖22 + h(z)

Called proximal minimization algorithm. Faster than subgradient
method, but not implementable unless we know prox in closed form

19



What happens if we can’t evaluate prox?

Theory for proximal gradient, with f = g + h, assumes that prox
function can be evaluated, i.e., assumes the minimization

proxt(x) = argmin
z

1

2t
‖x− z‖22 + h(z)

can be done exactly. In general, not clear what happens if we just
minimize this approximately

But, if you can precisely control the errors in approximating the
prox operator, then you can recover the original convergence rates3

In practice, if prox evaluation is done approximately, then it should
be done to decently high accuracy

3Schmidt et al. (2011), “Convergence rates of inexact proximal-gradient
methods for convex optimization”

20



Acceleration

Turns out we can accelerate proximal gradient descent in order to
achieve the optimal O(1/

√
ε) convergence rate. Four ideas (three

acceleration methods) by Nesterov:

• 1983: original acceleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

• 2007: acceleration idea for composite functions4

We will follow Beck and Teboulle (2008), an extension of Nesterov
(1983) to composite functions5

4Each step uses entire history of previous steps and makes two prox calls
5Each step uses information from two last steps and makes one prox call

21



Accelerated proximal gradient method

As before, consider:
min
x

g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point x(0) = x(−1) ∈ Rn, repeat:

v = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(
v − tk∇g(v)

)
for k = 1, 2, 3, . . .

• First step k = 1 is just usual proximal gradient update

• After that, v = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations

• When h = 0 we get accelerated gradient method

22



Momentum weights:

●

●

●

●

●

●

●
●
●
●
●●

●●
●●

●●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

−
0.

5
0.

0
0.

5
1.

0

k

(k
 −

 2
)/

(k
 +

 1
)

23



Back to lasso example: acceleration can really help!

0 200 400 600 800 1000

0.
00

2
0.

00
5

0.
02

0
0.

05
0

0.
20

0
0.

50
0

k

f−
fs

ta
r

Subgradient method
Proximal gradient
Nesterov acceleration

Note: accelerated proximal gradient is not a descent method

24



Backtracking line search

Backtracking under with acceleration in different ways. Simple
approach: fix β < 1, t0 = 1. At iteration k, start with t = tk−1,
and while

g(x+) > g(v) +∇g(v)T (x+ − v) +
1

2t
‖x+ − v‖22

shrink t = βt, and let x+ = proxt(v − t∇g(v)). Else keep x+

Note that this strategy forces us to take decreasing step sizes ...
(more complicated strategies exist which avoid this)

25



Convergence analysis

For criterion f(x) = g(x) + h(x), we assume as before:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t ≤ 1/L satisfies

f(x(k))− f? ≤ 2‖x(0) − x?‖22
t(k + 1)2

and same result holds for backtracking, with t replaced by β/L

Achieves optimal rate O(1/k2) or O(1/
√
ε) for first-order methods

26



FISTA

Back to lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Recall ISTA (Iterative Soft-thresholding Algorithm):

β(k) = Sλtk(β(k−1) + tkX
T (y −Xβ(k−1))

)
, k = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):6 for k = 1, 2, 3, . . .,

v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

β(k) = Sλtk
(
v + tkX

T (y −Xv)
)
,

6Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing

27



Lasso regression: 100 instances (with n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

28



Lasso logistic regression: 100 instances (n = 100, p = 500):

0 200 400 600 800 1000

1e
−

04
1e

−
03

1e
−

02
1e

−
01

1e
+

00

k

f(
k)

−
fs

ta
r

ISTA
FISTA

29



Is acceleration always useful?

Acceleration can be a very effective speedup tool ... but should it
always be used?

In practice the speedup of using acceleration is diminished in the
presence of warm starts. For example, suppose want to solve lasso
problem for tuning parameters values

λ1 > λ2 > · · · > λr

• When solving for λ1, initialize x(0) = 0, record solution x̂(λ1)

• When solving for λj , initialize x(0) = x̂(λj−1), the recorded
solution for λj−1

Over a fine enough grid of λ values, proximal gradient descent can
often perform just as well without acceleration

30



Sometimes backtracking and acceleration can be disadvantageous!
Recall matrix completion problem: the proximal gradient update is

B+ = Sλ

(
B + t

(
PΩ(Y )− P⊥(B)

))
where Sλ is the matrix soft-thresholding operator ... requires SVD

• One backtracking loop evaluates prox, across various values of
t. For matrix completion, this means multiple SVDs ...

• Acceleration changes argument we pass to prox: v − t∇g(v)
instead of x− t∇g(x). For matrix completion (and t = 1),

B −∇g(B) = PΩ(Y )︸ ︷︷ ︸
sparse

+P⊥Ω (B)︸ ︷︷ ︸
low rank

a

⇒ fast SVD

V −∇g(V ) = PΩ(Y )︸ ︷︷ ︸
sparse

+ P⊥Ω (V )︸ ︷︷ ︸
not necessarily

low rank

⇒ slow SVD

31



References and further reading

Nesterov’s four ideas (three acceleration methods):

• Y. Nesterov (1983), “A method for solving a convex
programming problem with convergence rate O(1/k2)”

• Y. Nesterov (1988), “On an approach to the construction of
optimal methods of minimization of smooth convex functions”

• Y. Nesterov (2005), “Smooth minimization of non-smooth
functions”

• Y. Nesterov (2007), “Gradient methods for minimizing
composite objective function”

32



Extensions and/or analyses:

• A. Beck and M. Teboulle (2008), “A fast iterative
shrinkage-thresholding algorithm for linear inverse problems”

• S. Becker and J. Bobin and E. Candes (2009), “NESTA: a
fast and accurate first-order method for sparse recovery”

• P. Tseng (2008), “On accelerated proximal gradient methods
for convex-concave optimization”

Helpful lecture notes/books:

• E. Candes, Lecture notes for Math 301, Stanford University,
Winter 2010-2011

• Y. Nesterov (1998), “Introductory lectures on convex
optimization: a basic course”, Chapter 2

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

33


