
Quasi-Newton Methods

Ryan Tibshirani
Convex Optimization 10-725



Last time: primal-dual interior-point methods

Given the problem

min
x

f(x)

subject to h(x) ≤ 0

Ax = b

where f , h = (h1, . . . , hm), all convex and twice differentiable, and
strong duality holds. Central path equations:

r(x, u, v) =



∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− 1/t

Ax− b


 = 0

subject to u > 0, h(x) < 0

2



Primal dual interior point method: repeat updates

(x+, u+, v+) = (x, u, v) + s(∆x,∆u,∆v)

where (∆x,∆u,∆v) is defined by Newton step:




Hpd(x) Dh(x)T AT

−diag(u)Dh(x) −diag(h(x)) 0
A 0 0






∆x
∆u
∆v


 = −r(x, u, v)

and Hpd(x) = ∇2f(x) +
∑m

i=1 ui∇2hi(x)

• Step size s > 0 is chosen by backtracking, while maintaining
u > 0, h(x) < 0

• Primal-dual iterates are not necessarily feasible (but they are
once we take one full Newton step)

• Often converges faster than barrier method

3



Outline

Today:

• Quasi-Newton motivation

• SR1, BFGS, DFP, Broyden class

• Convergence analysis

• Limited memory BFGS

• Stochastic quasi-Newton

4



Gradient descent and Newton revisited

Back to unconstrained, smooth convex optimization

min
x

f(x)

where f is convex, twice differentable, and dom(f) = Rn. Recall
gradient descent update:

x+ = x− t∇f(x)

and Newton’s method update:

x+ = x− t(∇2f(x))−1∇f(x)

• Newton’s method has (local) quadratic convergence, versus
linear convergence of gradient descent

• But Newton iterations are much more expensive ...

5



Quasi-Newton methods

Two main steps in Newton iteration:

• Compute Hessian ∇2f(x)

• Solve the system ∇2f(x)s = −∇f(x)

Each of these two steps could be expensive

Quasi-Newton methods repeat updates of the form

x+ = x+ ts

where direction s is defined by linear system

Bs = −∇f(x)

for some approximation B of ∇2f(x). We want B to be easy to
compute, and Bs = g to be easy to solve

6



Some history

• In the mid 1950s, W. Davidon was a mathematician/physicist
at Argonne National Lab

• He was using coordinate descent on an optimization problem
and his computer kept crashing before finishing

• He figured out a way to accelerate the computation, leading
to the first quasi-Newton method (soon Fletcher and Powell
followed up on his work)

• Although Davidon’s contribution was a major breakthrough in
optimization, his original paper was rejected

• In 1991, after more than 30 years, his paper was published in
the first issue of the SIAM Journal on Optimization

• In addition to his remarkable work in optimization, Davidon
was a peace activist (see the book “The Burglary”)

7



Quasi-Newton template

Let x(0) ∈ Rn, B(0) � 0. For k = 1, 2, 3, . . ., repeat:

1. Solve B(k−1)s(k−1) = −∇f(x(k−1))

2. Update x(k) = x(k−1) + tks
(k−1)

3. Compute B(k) from B(k−1)

Different quasi-Newton methods implement Step 3 differently. As
we will see, commonly we can compute (B(k))−1 from (B(k−1))−1

Basic idea: as B(k−1) already contains info about the Hessian, use
suitable matrix update to form B(k)

Reasonable requirement for B(k) (motivated by secant method):

∇f(x(k)) = ∇f(x(k−1)) +B(k)s(k−1)

8



Secant equation

We can equivalently write latter condition as

∇f(x+) = ∇f(x) +B+s

Letting y = ∇f(x+)−∇f(x), this becomes

B+s = y

This is called the secant equation

In addition to the secant equation, we want:

• B+ to be symmetric

• B+ to be “close” to B

• B � 0⇒ B+ � 0

9



Symmetric rank-one update

Let’s try an update of the form:

B+ = B + auuT

The secant equation B+s = y yields

(auT s)u = y −Bs

This only holds if u is a multiple of y −Bs. Putting u = y −Bs,
we solve the above, a = 1/(y −Bs)T s, which leads to

B+ = B +
(y −Bs)(y −Bs)T

(y −Bs)T s

called the symmetric rank-one (SR1) update

10



How can we solve B+s+ = −∇f(x+), in order to take next step?
In addition to propogating B to B+, let’s propogate inverses, i.e.,
C = B−1 to C+ = (B+)−1

Sherman-Morrison formula:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Thus for the SR1 update the inverse is also easily updated:

C+ = C +
(s− Cy)(s− Cy)T

(s− Cy)T y

In general, SR1 is simple and cheap, but has key shortcoming: it
does not preserve positive definiteness

11



Broyden-Fletcher-Goldfarb-Shanno update

Let’s now try a rank-two update:

B+ = B + auuT + bvvT .

The secant equation y = B+s yields

y −Bs = (auT s)u+ (bvT s)v

Putting u = y, v = Bs, and solving for a, b we get

B+ = B − BssTB

sTBs
+
yyT

yT s

called the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

12



Woodbury formula (generalization of Sherman-Morrison):

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

Applied to our case, we get a rank-two update on inverse C:

C+ = C +
(s− Cy)sT

yT s
+
s(s− Cy)T

yT s
− (s− Cy)T y

(yT s)2
ssT

=

(
I − syT

yT s

)
C

(
I − ysT

yT s

)
+
ssT

yT s

The BFGS update is thus still quite cheap: O(n2) operations

13



Importantly, BFGS update preserves positive definiteness. Recall
this means B � 0⇒ B+ � 0. Equivalently, C � 0⇒ C+ � 0

To see this, compute

xTC+x =

(
x− sTx

yT s
y

)T
C

(
x− sTx

yT s
y

)
+

(sTx)2

yT s

Now observe:

• Both terms are nonnegative

• Second term is only zero when sTx = 0

• In that case first term is only zero when x = 0

14



Davidon-Fletcher-Powell update

We could have pursued same idea to update inverse C:

C+ = C + auuT + bvvT .

Multiplying by y, using the secant equation s = C+y, and solving
for a, b, yields

C+ = C − CyyTC

yTCy
+
ssT

yT s

Woodbury then shows

B+ =

(
I − ysT

yT s

)
B

(
I − syT

yT s

)
+
yyT

yT s

This is the Davidon-Fletcher-Powell (DFP) update. Also cheap:
O(n2), preserves positive definiteness. Not as popular as BFGS

15



Curvature condition

Observe that B+ � 0 and B+s = y imply

yT s = sTB+s > 0.

called the curvature condition. Fact: if yT s > 0, then there exists
M � 0 such that Ms = y

Interesting alternate derivation for DFP update: find B+ “closest”
to B w.r.t. appropriate conditions, i.e., solve

min
B+

‖W−1(B+ −B)W−T ‖F

subject to B+ = (B+)T

B+s = y

where W is nonsingular and such that WW T s = y. And BFGS
solves same problem but with roles of B and C exchanged

16



Broyden class

SR1, DFP, and BFGS are some of numerous possible quasi-Newton
updates. The Broyden class of updates is defined by:

B+ = (1− φ)B+
BFGS + φB+

DFP, φ ∈ R

By putting v = y/(yT s)−Bs/(sTBs), we can rewrite the above as

B+ = B − BssTB

sTBs
+
yyT

yT s
+ φ(sTBs)vvT

Note:

• BFGS corresponds to φ = 0

• DFS corresponds to φ = 1

• SR1 corresponds to φ = yT s/(yT s− sTBs)

17



Convergence analysis

Assume that f convex, twice differentiable, having dom(f) = Rn,
and additionally

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

(same conditions as in the analysis of Newton’s method)

Theorem: Both DFP and BFGS, with backtracking line search,
converge globally. Furthermore, for all k ≥ k0,

‖x(k) − x?‖2 ≤ ck‖x(k−1) − x?‖2

where ck → 0 as k →∞. Here k0, ck depend on L,m,M

This is called local superlinear convergence

18



Example: Newton versus BFGS

Example from Vandenberghe’s lecture notes: Newton versus BFGS
on LP barrier problem, for n = 100, m = 500

min
x

cTx−
m∑

i=1

log(bi − aTi x)

Example

minimize cTx �
mX

i=1

log(bi � aT
i x)

n = 100, m = 500

0 2 4 6 8 10 12
10�12

10�9

10�6

10�3

100

103

k

f
(x

k
)
�

f
?

Newton

0 50 100 150
10�12

10�9

10�6

10�3

100

103

k

f
(x

k
)
�

f
?

BFGS

• cost per Newton iteration: O(n3) plus computing r2f(x)

• cost per BFGS iteration: O(n2)

Quasi-Newton methods 2-10

Note that Newton update is O(n3), quasi-Newton update is O(n2).
But quasi-Newton converges in less than 100 times the iterations

19



Implicit-form quasi-Newton

For large problems, quasi-Newton updates can become too costly

Basic idea: instead of explicitly computing and storing C, compute
an implicit version of C by maintaining all pairs (y, s)

Recall BFGS updates C via

C+ =

(
I − syT

yT s

)
C

(
I − ysT

yT s

)
+
ssT

yT s

Observe this leads to

C+g = p+ (α− β)s, where

α =
sT g

yT s
, q = g − αy, p = Cq, β =

yT p

yT s

20



We see that C+g can be computed via too loops of length k (if
C+ is the approximation to the inverse Hessian after k iterations):

1. Let q = −∇f(x(k))

2. For i = k − 1, . . . , 0:

(a) Compute αi = (s(i))T q/((y(i))T s(i))
(b) Update q = q − αyi

3. Let p = C(0)q

4. For i = 0, . . . , k − 1:

(a) Compute β = (y(i))T p/((y(i))T s(i))
(b) Update p = p+ (αi − β)s(i)

5. Return p

21



Limited memory BFGS

Limited memory BFGS (LBFGS) simply limits each of these loops
to be length m:

1. Let q = −∇f(x(k))

2. For i = k − 1, . . . , k −m:

(a) Compute αi = (s(i))T q/((y(i))T s(i))
(b) Update q = q − αyi

3. Let p = C̄(k−m)q

4. For i = k −m, . . . , k − 1:

(a) Compute β = (y(i))T p/((y(i))T s(i))
(b) Update p = p+ (αi − β)s(i)

5. Return p

In Step 3, C̄(k−m) is our guess at C(k−m) (which is not stored). A
popular choice is C̄(k−m) = I, more sophisticated choices exist

22



Stochastic quasi-Newton methods

Consider now the problem

min
x

Eξ[f(x, ξ)]

for a noise variable ξ. Tempting to extend previous ideas and take
stochastic quasi-Newton updates of the form:

x(k) = x(k−1) − tkC(k−1)∇f(x(k−1), ξk)

But there are challenges:

• Can have at best sublinear convergence (recall lower bound by
Nemirovski et al.) So is additional overhead of quasi-Newton,
worth it, over plain SGD?

• Updates to C depend on consecutive gradient estimates; noise
in the gradient estimates could be a hindrance

23



The most straightforward adaptation of quasi-Newton methods is
to use BFGS (or LBFGS) with

s(k−1) = x(k) − x(k−1), y(k−1) = ∇f(x(k), ξk)−∇f(x(k−1), ξk)

The key is to use the same noise variable ξk in the two stochastic
gradients. This is due to Schraudolph et al. (2007)

More recently, Byrd et al. (2015) propose a stochastic version of
LBFGS with three main changes:

• Perform an LBFGS update only every L iterations

• Compute s to be an average over L last search directions

• Compute y using Hessian approximation based on sampling

With proper tuning, either approach can give improvements over
SGD

24



Example from Byrd et al. (2015):

the particular implementation [13] of one of the coordinate descent (CD) methods of
Tseng and Yun [26].

Figure 1 reports the performance of SGD (with � = 7) and SQN (with � = 2),
as measured by accessed data points. Both methods use a gradient batch size of
b = 50; for SQN we display results for two values of the Hessian batch size bH , and
set M = 10 and L = 10. The vertical axis, labeled fx, measures the value of the
objective (4.1); the dotted black line marks the best function value obtained by the
coordinate descent (CD) method mentioned above. We observe that the SQN method
with bH = 300 and 600 outperforms SGD, and obtains the same or better objective
value than the coordinate descent method.

0 0.5 1 1.5 2 2.5 3

x 10
5

10
−2

10
−1

10
0

fx versus accessed data points

adp

fx

 

 
SGD: b = 50, β = 7

SQN: b = 50, β = 2, bH = 300

SQN: b = 50, β = 2, bH = 600

CD approx min

SQN vs SGD on Synthetic Binary Logistic Regression
with n = 50 and N = 7000

Figure 1: Illustration of SQN and SGD on the synthetic dataset. The dotted black
line marks the best function value obtained by the coordinate descent (CD) method.
For SQN we set M = 10, L = 10 and bH = 300 or 600.

16

25



References and further reading

• L. Bottou, F. Curtis, J. Nocedal (2016), “Optimization
methods for large-scale machine learning”

• R. Byrd, S. Hansen, J. Nocedal, Y. Singer (2015), “A
stochastic quasi-Newton method for large-scale optimization”

• J. Dennis and R. Schnabel (1996), “Numerical methods for
unconstrained optimization and nonlinear equations”

• J. Nocedal and S. Wright (2006), “Numerical optimization”,
Chapters 6 and 7

• N. Schraudolph, J. Yu, S. Gunter (2007), “A stochastic
quasi-Newton method for online convex optimization”

• L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring
2011-2012

26


