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Last time: gradient descent

Consider the problem
min f(x)

for f convex and differentiable, dom(f) = R™. Gradient descent:
choose initial z(9) ¢ R"™, repeat

2R — (k=1) _ t, - Vf(:z(k_l)), k=1,2,3,...

Step sizes t; chosen to be fixed and small, or by backtracking line
search

If Vf is Lipschitz, gradient descent has convergence rate O(1/e).
Downsides:

® Requires f differentiable

® Can be slow to converge
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Subgradients

Recall that for convex and differentiable f,

f) > f@)+ V@) (y—x) forall z,y

That is, linear approximation always underestimates f
A subgradient of a convex function f at x is any g € R" such that
fly) = f@)+g"(y—=) forally

e Always exists!
e If f differentiable at x, then g = V f(x) uniquely

e Same definition works for nonconvex f (however, subgradients
need not exist)

On the relative interior of dom(f)



Examples of subgradients

Consider f: R = R, f(x) = |z|
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® For x # 0, unique subgradient g = sign(z)
® For x = 0, subgradient g is any element of [—1, 1]
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R™ =R, f(z) = |[=]2

Consider f

= z/|l]}2

® For x = 0, subgradient g is any element of {z

® For x # 0, unique subgradient g



R™ =R, f(z) = =]l

Consider f
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® For x; = 0, ith component g; is any element of [—1,1]

sign
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i 1th component g

, unique

® Forxz; #0



Consider f(x) = max{fi(z), fo(x)}, for fi1, fo : R™ — R convex,
differentiable

2(x), unique subgradient g = V f1(z)

® For fi(x) > fo(x)

® For fo(x) > fi(x), unique subgradient g = V fo(x)

® For fi(x) = fa(x), subgradient g is any point on line segment
between V f1(z) and V fa(x)



Subdifferential

Set of all subgradients of convex f is called the subdifferential:

Of(x) = {g € R": g is a subgradient of f at =}

Nonempty (only for convex f)

Of(x) is closed and convex (even for nonconvex f)
If f is differentiable at z, then df(x) = {Vf(x)}
If 0f(z) = {g}, then f is differentiable at z and Vf(z) =g



Connection to convex geometry

Convex set C' C R"™, consider indicator function I : R™ — R,

0 ifzeC

IC(:L‘):I{xGC}:{OO frdC

For z € C, dIc(x) = Ne(z), the normal cone of C at z is, recall
Ne(z) ={g e R": g7z > gTy for any y € C}
Why? By definition of subgradient g,

Io(y) > Io(z) +¢" (y— ) forall y

® Fory ¢ C, Io(y) = o0
® For y € C, this means 0 > g7 (y — x)
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Subgradient calculus

Basic rules for convex functions:
® Scaling: d(af) =a-0f provided a >0
e Addition: O(f1 + f2) = 0f1 + 0f2
e Affine composition: if g(z) = f(Az +b), then

dg(x) = ATOf(Az +b)
e Finite pointwise maximum: if f(z) = max;—1,_._m fi(z), then
of (x) = conv< U Gfi(a:)>
i:fi(x)=f(x)

convex hull of union of subdifferentials of active functions at

12



® General composition: if

f(@) = h(g(z)) = h(g1(2), ..., gu(x))

whereg:R”—ﬂRk, h:RF 5 R, f:R™ =R, his convex
and nondecreasing in each argument, g is convex, then

of(x) C {pIQI + o+ PR

p € Oh(g(x)), ¢; € Dgi(x), i=1,... ,k}

® General pointwise maximum: if f(z) = maxses fs(x), then

8f(x)2cl{c0nv< U afs(a:)>}

s:fs(x)=f(z)

Under some regularity conditions (on S, f), we get equality

13



Norms: important special case. To each norm || - ||, there is a
dual norm || - ||« such that

|z|| = max 2Tz
ll2]l«<1

(For example, || - ||, and || - ||4 are dual when 1/p+1/q =1.)
In fact, for f(z) = ||z|| (and f.(z) = 27z), we get equality:

of (z) = cl{conv( U 8fz(;c)) }

zifz(z)=f(z)

Note that df,(x) = z. And if 21, 25 each achieve the max at
x, which means that 2] x = zI'z = ||z||, then by linearity, so

will tz1 + (1 —t)2z2 for any t € [0,1]. Thus

Of (r) = argmax 2z
[EJ[S
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Optimality condition

For any f (convex or not),

fl) =min fz) < 0€0f()

That is, * is a minimizer if and only if O is a subgradient of f at
x*. This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y
fy) = f(a*) + 0" (y —a*) = f(a¥)

Note the implication for a convex and differentiable function f,

with f(x) = {V f(z)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min f(x) subject to z € C
is solved at x, for f convex and differentiable, if and only if
Vi) '(y—2z)>0 forall yeC

Intuitively: says that gradient increases as we move away from .
How to prove it? First recast problem as

ngn f(x) + Ic(x)

Now apply subgradient optimality: 0 € 9(f(x) + Ic(x))

16



Observe

0e 8(f(x) + Ic

—~

0€{Vf(x)}+Nco(x)

— Vf( S Nc(x)

—Vf(x) 'z >-Vfx) 'y forall ye C
Vi) '(y—x)>0foral yeC

z)
z)

1ol

as desired

Note: the condition 0 € df(x) + N¢(x) is a fully general condition
for optimality in convex problems. But it's not always easy to work
with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y € R", X € R"*P, lasso problem can be parametrized as
1 2
min -y — X85 + Al 81
B 2
where A > 0. Subgradient optimality:

1 2
0 (5lly - XBI3 + N8l )
= 0e-X"(y—Xp)+29|Blh
— XT(y—XpB)=v
for some v € 9||8]1, i.e.,
{1} if 6; >0

v; € {_1} |f/81<07 Z:va
1.1 if Bi=0
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Write X1, ..., X, for columns of X. Then our condition reads:

X[y —XB)=X-sign(B) if B; #0
X (y— XB)| < A if ;=0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT(y — XB)| < A, then B; = 0 (used by screening rules, later?)
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Example: soft-thresholding

Simplfied lasso problem with X = I:
i *1 ly — ||2 AllBI
min Bl5 + M| 5
59 ) 2 1

This we can solve directly using subgradient optimality. Solution is
B = Sx(y), where S} is the soft-thresholding operator:

yi— A ity > A
[Sx(y)]li = {0 if —A<y; <\, i=1,...,n
yi+ A ity <=

Check: from last slide, subgradient optimality conditions are

yi — Bi = A-sign(B;) if B #0
lyi — Bil <A if B; =0
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Now plug in § = S\(y) and check these are satisfied:
®* Wheny, >\, Bi=y—A>0,s0y;, — B =A=A-1
® When y; < —A, argument is similar
e When |y;| < A, 5; =0, and |y; — 5i| = |yi| < A
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0.5

Soft-thresholding in
one variable:

0.0
1
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-1.0 -05 0.0 0.5 1.0
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Example: distance to a convex set

Recall the distance function to a closed, convex set C"

dist(z,C) = min ||y — |2
yeC
This is a convex function. What are its subgradients?

Write dist(z, C') = ||x — Po(x)||2, where Po(z) is the projection of
x onto C. It turns out that when dist(x,C) > 0,

z — Po(z) }

adist(z, C) = {Hx—Pc(x)Hg

Only has one element, so in fact dist(x, C) is differentiable and
this is its gradient
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We will only show one direction, i.e., that

z — Po(x)

P pdist(x, C
e~ Po@)]s (=.C)

Write u = Po(x). Then by first-order optimality conditions for a
projection,
(x —u)'(y—u) <0 forall ycC

Hence
CCH={y:(z—u)"(y—u) <0}

Claim:
(z —uw)"(y — )
|2 — ull2

Check: first, for y € H, the right-hand side is <0

dist(y, C) > for all y
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Now for y ¢ H, we have (z —u)” (y —u) = ||z — ul]2||y — u||2 cos @

where 0 is the angle between x — u and y — u. Thus

(z —u)"(y —u)
2 — ull2

= ||y — u||2 cos O = dist(y, H) < dist(y, C)

as desired
Using the claim, we have for any y

(z—w(y—z+z—u
[l = ull2

— o~ + (2 )T<y—x>

—ull2

dist(y, C') >

Hence g = (v — u)/||x — ul|2 is a subgradient of dist(z,C) at
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