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Last time: gradient descent

Consider the problem
min
x

f(x)

for f convex and differentiable, dom(f) = Rn. Gradient descent:
choose initial x(0) ∈ Rn, repeat

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Step sizes tk chosen to be fixed and small, or by backtracking line
search

If ∇f is Lipschitz, gradient descent has convergence rate O(1/ε).
Downsides:

• Requires f differentiable

• Can be slow to converge
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Outline

Today: crucial mathematical underpinnings!

• Subgradients

• Examples

• Properties

• Optimality characterizations
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Subgradients

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

That is, linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

• Always exists1

• If f differentiable at x, then g = ∇f(x) uniquely

• Same definition works for nonconvex f (however, subgradients
need not exist)

1On the relative interior of dom(f)
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Examples of subgradients

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖2
• For x = 0, subgradient g is any element of {z : ‖z‖2 ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [−1, 1]
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Consider f(x) = max{f1(x), f2(x)}, for f1, f2 : Rn → R convex,
differentiable

−2 −1 0 1 2

0
5

10
15

x

f(
x)

• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on line segment

between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• Nonempty (only for convex f)

• ∂f(x) is closed and convex (even for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x is, recall

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? By definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...,m fi(x), then

∂f(x) = conv

( ⋃
i:fi(x)=f(x)

∂fi(x)

)

convex hull of union of subdifferentials of active functions at x
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• General composition: if

f(x) = h
(
g(x)

)
= h

(
g1(x), . . . , gk(x)

)
where g : Rn → Rk, h : Rk → R, f : Rn → R, h is convex
and nondecreasing in each argument, g is convex, then

∂f(x) ⊆
{
p1q1 + · · ·+ pkqk :

p ∈ ∂h(g(x)), qi ∈ ∂gi(x), i = 1, . . . , k
}

• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl

{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)

)}

Under some regularity conditions (on S, fs), we get equality
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• Norms: important special case. To each norm ‖ · ‖, there is a
dual norm ‖ · ‖∗ such that

‖x‖ = max
‖z‖∗≤1

zTx

(For example, ‖ · ‖p and ‖ · ‖q are dual when 1/p+ 1/q = 1.)
In fact, for f(x) = ‖x‖ (and fz(x) = zTx), we get equality:

∂f(x) = cl

{
conv

( ⋃
z:fz(x)=f(x)

∂fz(x)

)}

Note that ∂fz(x) = z. And if z1, z2 each achieve the max at
x, which means that zT1 x = zT2 x = ‖x‖, then by linearity, so
will tz1 + (1− t)z2 for any t ∈ [0, 1]. Thus

∂f(x) = argmax
‖z‖∗≤1

zTx

14



Optimality condition

For any f (convex or not),

f(x?) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x?)

That is, x? is a minimizer if and only if 0 is a subgradient of f at
x?. This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note the implication for a convex and differentiable function f ,
with ∂f(x) = {∇f(x)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min
x

f(x) subject to x ∈ C

is solved at x, for f convex and differentiable, if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

Intuitively: says that gradient increases as we move away from x.
How to prove it? First recast problem as

min
x

f(x) + IC(x)

Now apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x))
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Observe

0 ∈ ∂
(
f(x) + IC(x)

)
⇐⇒ 0 ∈ {∇f(x)}+NC(x)
⇐⇒ −∇f(x) ∈ NC(x)
⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y for all y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0 for all y ∈ C

as desired

Note: the condition 0 ∈ ∂f(x) +NC(x) is a fully general condition
for optimality in convex problems. But it’s not always easy to work
with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y ∈ Rn, X ∈ Rn×p, lasso problem can be parametrized as

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality:

0 ∈ ∂
(1
2
‖y −Xβ‖22 + λ‖β‖1

)
⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1
⇐⇒ XT (y −Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.,

vi ∈


{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0

, i = 1, . . . , p
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Write X1, . . . , Xp for columns of X. Then our condition reads:{
XT
i (y −Xβ) = λ · sign(βi) if βi 6= 0

|XT
i (y −Xβ)| ≤ λ if βi = 0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT

i (y −Xβ)| < λ, then βi = 0 (used by screening rules, later?)
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Example: soft-thresholding

Simplfied lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

This we can solve directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator:

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . , n

Check: from last slide, subgradient optimality conditions are{
yi − βi = λ · sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0
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Now plug in β = Sλ(y) and check these are satisfied:

• When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1
• When yi < −λ, argument is similar

• When |yi| ≤ λ, βi = 0, and |yi − βi| = |yi| ≤ λ

Soft-thresholding in
one variable:
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Example: distance to a convex set

Recall the distance function to a closed, convex set C:

dist(x,C) = min
y∈C

‖y − x‖2

This is a convex function. What are its subgradients?

Write dist(x,C) = ‖x−PC(x)‖2, where PC(x) is the projection of
x onto C. It turns out that when dist(x,C) > 0,

∂dist(x,C) =

{
x− PC(x)
‖x− PC(x)‖2

}
Only has one element, so in fact dist(x,C) is differentiable and
this is its gradient

22



We will only show one direction, i.e., that

x− PC(x)
‖x− PC(x)‖2

∈ ∂dist(x,C)

Write u = PC(x). Then by first-order optimality conditions for a
projection,

(x− u)T (y − u) ≤ 0 for all y ∈ C

Hence
C ⊆ H = {y : (x− u)T (y − u) ≤ 0}

Claim:

dist(y, C) ≥ (x− u)T (y − u)
‖x− u‖2

for all y

Check: first, for y ∈ H, the right-hand side is ≤ 0

23



Now for y /∈ H, we have (x− u)T (y− u) = ‖x− u‖2‖y− u‖2 cos θ
where θ is the angle between x− u and y − u. Thus

(x− u)T (y − u)
‖x− u‖2

= ‖y − u‖2 cos θ = dist(y,H) ≤ dist(y, C)

as desired

Using the claim, we have for any y

dist(y, C) ≥ (x− u)T (y − x+ x− u)
‖x− u‖2

= ‖x− u‖2 +
(

x− u
‖x− u‖2

)T
(y − x)

Hence g = (x− u)/‖x− u‖2 is a subgradient of dist(x,C) at x
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