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Remark. If you find the content of this lecture interesting, consider 47-860, Convex Analysis, MW 3:30 -
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Remark. This lecture is based off of the paper: https://arxiv.org/abs/1812.10198.

25.1 Review: (Euclidean) proximal methods

Composite convex minimization. Consider the problem:

min
x∈Rn
{f(x) + ψ(x)} (25.1)

where f : Rn → R ∪ {∞} is differentiable and convex, and ψ : Rn → R ∪ {∞} is closed and convex with
dom(ψ) ⊆ dom(f). Note that ψ tends to be a regularization term.

Let Proxt be the following proximal map:

Proxt(x) := arg min
z∈Rn

{
1

2t
‖z − x‖2 + ψ(z)

}
(25.2)

There are a couple ways for us to approach (25.1).

Proximal gradient (PG).

pick tk > 0

xk+1 = Proxtk(xk − tk∇f(xk))

Accelerated proximal gradient (APG).

pick βk ≥ 0, tk > 0

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))
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Stepsize. Choosing an appropriate stepsize for the generic update z+ = Proxt(y − t∇f(y)) motivates the
Bregman distance. Observe that:

Proxt(y − t∇f(y)) = arg min
z∈Rn

{
f(y) + 〈∇f(y), z − y〉+

1

2t
‖z − y‖2 + ψ(z)

}
Therefore, it makes sense to choose t such that z+ satisfies:

f(z+) + ψ(z+) ≤ f(y) + 〈(∇f(y), z+ − y〉+
1

2t
‖z+ − y‖2 + ψ(z+)

f(z+)− f(y)− 〈∇f(y), z+ − y〉︸ ︷︷ ︸
=Df (z+,y)

≤ 1

2t
‖z+ − y‖ (25.3)

Definition 25.1 (Bregman distance.)

Df (z, y) := f(z)− f(y)− 〈∇f(y), z − y〉

With this definition, the condition (25.3) may more succinctly be stated:

Df (z+, y) ≤ 1

2t
‖z+ − y‖2

Definition 25.2 (L-smoothness.) We say that a function f is L-smooth if for all z, y ∈ dom(f),

Df (z, y) ≤ L

2
‖z − y‖2

In this case condition (25.3) holds for t = 1
L

Remark. f is L-smooth if ∇f is L-Lipschitz.

Convergence of Proximal Gradient. Suppose we solve (25.1) via xk+1 = Proxtk(xk − tk∇f(xk)).

Theorem 25.3 If the stepsizes tk satisfy

Df (xk+1, xk) ≤ 1

2tk
‖xk+1 − xk‖2

then for all x̄ ∈ arg minx{f(x) + ψ(x)}, the Proximal Gradient iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ ‖x0 − x̄‖2

2
∑k−1
i=0 ti

In particular, if each tk ≥ 1
L > 0 then

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ L · ‖x0 − x̄‖2

2k
= O(1/k)
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Convergence of Accelerated Proximal Gradient. Suppose we solve (25.1) using the updates:

yk = xk + βk(xk − xk−1)

xk+1 = Proxtk(yk − tk∇f(yk))

Theorem 25.4 (Beck & Teboulle 2009, Nesterov 2013) Suppose βk = k−1
k+2 and the stepsizes tk satisfy

tk ≥ 1/L > 0 and

Df (xk+1, yk) ≤ 1

2tk
‖xk+1 − yk‖2

Then for all x̄ ∈ arg minx{f(x) + ψ(x)} the Accelerated Proximal Gradient iterates satisfy

f(xk) + ψ(xk)− (f(x̄)− ψ(x̄)) ≤ 2L · ‖x0 − x̄‖2

(k + 1)2
= O(1/k2)

25.2 Bregman proximal methods

We will now generalize the Euclidean proximal map of Section 25.1 to the Bregman proximal map. In doing
so, we will see that we may recover O(1/k) and O(1/k2) convergence of proximal gradient methods when f
is L-smooth.

Definition 25.5 (Bregman proximal map.)

g 7→ arg min
y∈Rn

{
〈g, y〉+

1

t
Dh(y, x) + ψ(y)

}

The idea here is to replace 1
2t‖z − x‖

2 with 1
tDh(z, x). The Euclidean proximal map previously considered

in Section 25.1 corresponds to the squared Euclidean norm reference function

h(x) =
‖x‖2

2
 Dh(y, x) =

‖y − x‖2

2

25.2.1 Bregman proximal gradient

Consider problem (25.1) and suppose h : Rn 7→ R ∪ {∞} is a reference function. The Bregman proximal
gradient (BPG) method does:

pick tk > 0

xk+1 = arg min
z∈Rn

{
〈∇f(xk), z〉+

1

tk
Dh(z, xk) + ψ(z)

}
= arg min

z∈Rn

{
f(xk) + 〈∇f(xk), z − xk〉+

1

tk
Dh(z, xk) + ψ(z)

}

Convergence. Bregman proximal gradient has O(1/k) convergence when f is smooth relative to h, i.e.,
when

Df (y, x) ≤ L ·Dh(y, x) (25.4)

for all x, y ∈ dom(f)
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25.2.2 Accelerated Bregman proximal gradient

For the same problem 25.1, the accelerated Bregman proximal gradient method (Gutman-Peña) generates
sequences xk, yk, zk for k = 0, 1, . . . as follows:

pick tk > 0

zk+1 = arg min
z∈Rn

{
〈∇f(yk), z〉+

1

tk
Dh(z, zk) + ψ(z)

}
xk+1 =

∑k
i=0 tizi+1∑k
i=0 ti

yk+1 =

∑k
i=0 tizi+1 + tk+1zk+1∑k+1

i=0 ti

See related work by Hanzely-Richtarik-Xiao (2018).

Convergence. Accelerated Bregman proximal gradient has convergence O(1/kγ) if f is (L, γ)-smooth
relative to h, as defined in the sequel.

25.2.3 Why Bregman proximal methods?

By generalizing the reference function beyond the Euclidean squared norm, we attain additional freedom
which may aid the computation of the proximal mapping. For example, for

x ∈ ∆n−1 := {x ∈ Rn+ : ‖x‖1 = 1}

the map

g 7→ arg min
y∈∆n−1

{〈g, y〉+Dh(y, x)}

is much simpler for h(x) =
∑n
i=1 xi log(xi) than for h(x) = ‖x‖2/2. We will generalize the L-smoothness

assumption for convergence to relative L-smoothness.

The following two examples could be solved via Euclidean proximal methods, but they are more amenable
to Bregman proximal methods with the Burg entropy reference function: h(x) = −

∑n
i=1 log(xi):

• D-optimal design problem (min-volume closing ellipsoid).

min
x∈∆n−1

− log(det(HXH>))

where X = Diag(x) and H ∈ Rm×n with m < n.

• Poisson linear inverse problem.

min
x∈Rn

+

DKL(b, Ax)

where b ∈ Rn++ and A ∈ Rm×n+ with m > n and DKL(·, ·) is the Kullback-Leibler divergence.



Lecture 25: November 20 25-5

25.3 Convergence details for Bregman proximal methods

25.3.1 Fenchel duality

We first recall some details about duality.

Definition 25.6 (Convex conjugate) For φ : Rn → R let φ∗ : Rn → R ∪ {∞} be defined via

φ∗(u) = sup
x∈Rn

{〈u, x〉 − φ(x)}

Consider the primal problem

min
x
{f(x) + ψ(x)}

the corresponding Fenchel dual problem is

max
u
{−f∗(u)− ψ∗(−u)}

Observe that if f(x̄) + ψ(x̄) = −f∗(ū)− ψ∗(−ū) then x̄, ū are optimal.

25.3.2 Warm-up towards convergence

Suppose an algorithm generates sequences xk, vk, wk such that

f(xk) + ψ(vk) ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

for some sequence of “distance” functions dk : Rn → R. Then for all x̄ ∈ arg minx{f(x) + ψ(x)} we have

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ dk(x̄) (25.5)

Observe that this gives us a suboptimality gap for free. For suitable tk, Bregman proximal gradient and
accelerated Bregman proximal gradient satisfy (25.5) for

dk(z) =
1∑k
i=0 ti

Dh(z, z0)

We now state a key lemma for Bregman proximal methods. Suppose yk, zk ∈ ri(dom(h)) ∩ dom(ψ), gk :=
∇f(yk), and tk > 0 satisfy

zk+1 = arg min
z∈Rn

{
〈gk, z〉+

1

tk
Dh(z, zk) + ψ(z)

}
for k = 0, 1, 2, . . . . We may rewrite this via optimality conditions as:

gk + gψk +
1

tk
(∇h(zk+1)−∇h(zk)) = 0 (25.6)

for some gψk ∈ ∂ψ(zk+1).

Let

vk :=

∑k
i=0 tigi∑k
i=0 ti

, wk :=

∑k
i=0 tig

ψ
i∑k

i=0 ti
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Lemma 25.7 Suppose yk, zk, gk, g
ψ
k , tk and vk, wk are as previously defined. Then∑k

i=0 ti(f(zi+1) + ψ(zi+1)−Df (zi+1, yi)) +Dh(zi+1, zi)∑k
i=0 ti

= −
∑k
i=0 ti(f

∗(gi) + ψ∗(gψi ))∑k
i=0 ti

− d∗k(−vk − wk)

≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

where dk(z) := 1∑k
i=0 ti

Dh(z, z0)

25.3.3 Convergence of Bregman proximal gradient

Recall the Bregman proximal gradient algorithm from Section 25.2.1.

Theorem 25.8 (Gutman-Peña 2018) Suppose each ti is such that

Df (xi+1, xi) ≤
1

ti
Dh(xi+1, xi) (25.7)

Then for x̄ ∈ arg minx∈Rn{f(x) + ψ(x)} the Bregman proximal gradient iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0)

Proof: We apply Lemma 25.7 to xk = yk = zk and obtain:∑k
i=0 ti(f(xi + 1) + ψ(xi+1)−Df (xi+1, xi)) +Dh(xi+1, xi)∑k

i=0 ti
≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

Then, (25.7) implies

f(xk+1) + ψ(xk+1) ≤
∑k
i=0 ti(f(xi+1) + ψ(xi+1))∑k

i=0 ti
≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

Thus for all x̄ ∈ arg minx∈Rn{f(x) + ψ(x)}

f(xk) + ψ(xk) ≤ f(x̄) + ψ(x̄) +
1∑k
i=0 ti

Dh(x̄, x0)

25.3.4 Relative smoothness

We will see that relative smoothness is a natural extension of smoothness beyond the Euclidean intuition.
Suppose f, h are convex and differentiable on Q. We say that f is L-smooth relative to h on Q if for all
x, y ∈ Q

Df (y, x) ≤ L ·Dh(y, x)

(Nguyen 2012, Bauschke et al. 2017, Lu et al. 2018).

If f is L-smooth relative to h on dom(ψ) then (25.7) holds for ti = 1/L, i = 0, 1, . . . , k− 1 and the Bregman
proximal gradient iterates satisfy

f(xk) + ψ(xk)− (f(x̄) + ψ(x̄)) ≤ L ·Dh(x̄, x0)

k

This recovers results by Bauschke-Bolte-Teboulle (2017) and by Lu-Freund-Nesterov (2018). This also ex-
tends the O(1/k) convergence rate of proximal gradient.
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25.3.5 Convergence of the accelerated Bregman proximal gradient method

Recall the accelerated Bregman proximal gradient method from Section 25.2.2. By letting θk := tk∑k
i=0 ti

, the

updates may be rewritten as

zk+1 = arg min
z∈Rn

{
〈∇f(yk), z〉+

1

tk
Dh(z, zk) + ψ(z)

}
xk+1 = (1− θk)xk + θkzk+1

yk+1 = (1− θk+1)xk+1 + θk+1zk+1

= xk+1 +
θk+1(1− θk)

θk
(xk+1 − xk)

Notice that the xk+1 update is a convex combination of the past updates and the current update.

Theorem 25.9 (Gutman-Peña 2018) Suppose each ti and θi are such that

Df (xi+1, yi)− (1− θi)Df (xi, yi) ≤
θi
ti
Dh(zi+1, zi) (25.8)

Then for x̄ ∈ X̄ := arg minx∈Rn{f(x) + ψ(x)} the accelerated Bregman proximal gradient iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤ 1∑k
i=0 ti

Dh(x̄, x0)

Proof: Similar to the argument for Bregman proximal gradient; use Lemma 25.7 and Fenchel duality.

25.3.6 Relative smoothness revisited

To accelerate as much as possible, choose tk > 0, or equivalently, θk = tk∑k
i=0 ti

as large as possible such that

(25.8) holds.

Definition 25.10 ((L, γ) relative smoothness) f is (L, γ)-smooth relative to h on Q if for all x, y, z, z̃ ∈
Q and θ ∈ [0, 1]

Df ((1− θ)x+ θz̃, (1− θ)x+ θz) ≤ LθγDh(z̃, z)

Remark. In the Euclidean case, the “anchor point” disappears as L-relative smoothness yields (L, 2)
relative smoothness.

So, how large may we push the stepsizes in acceleration?

Theorem 25.11 (Gutman-Peña 2018) Suppose f is (L, γ) smooth relative to h on ri(dom(h))∩ dom(ψ)
for some L > 0 and γ > 0.

Then the stepsizes tk may be chosen such that the accelerated Bregman proximal gradient iterates satisfy

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)
L ·Dh(X̄, x0)

This recovers the O(1/k2) rate when h(x) = 1
2‖x‖

2 and f is L-smooth.
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25.3.7 Implementation details

We wish to pick θk as large as possible such that (25.8) holds. To do this, we choose θk of the form

θk =
γk

k + γk

via backtracking on γk. If all γk ≥ γ > 0 then we obtain

f(xk+1) + ψ(xk+1)− (f(x̄) + ψ(x̄)) ≤
(

γ

k + γ

)γ
L ·Dh(X̄, x0)

Performing this with γ = 2 recovers the O(1/k2) rate, and this happens when h(x) = 1
2‖x‖

2.

25.3.8 Conclusion

In this lecture, we analyzed Bregman proximal methods through Fenchel duality. The key observation is
that this class of algorithms generate xk, vk, wk such that:

f(xk+1) + ψ(xk+1 ≤ −f∗(vk)− ψ∗(wk)− d∗k(−vk − wk)

Related developments that were not discussed:

• Proximal subgradient method when f is non-differentiable

• Linear convergence via restarting

• Analogous results for conditional gradient

Current and future work:

• Saddle-point problems

• Stochastic first-order methods

• More computational experiments

• Role of γ in accelerated Bregman proximal methods
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