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4.1 Example of convex sets: Linear matrix inequality solution set

Given A1, . . . , Ak ∈ Sn, a linear matrix inequality in x ∈ Rk is

x1A1 + x2A2 + . . . xkAk � B

The set C of points x that satisfy the above inequality is convex. This can be shown by verifying that
x, y ∈ C =⇒ tx+ (1− t)y ∈ C or by using the fact that affine pre-image preserves convexity i.e. if S ⊆ Rm
is a convex set and A = Rm×n, then P = A−1(Q) is convex.

4.2 Example of convex functions

4.2.1 Norms

‖x‖ is convex for any norm. Spectral norm (‖X‖op = σ1(X)) and trace norm (‖X‖tr =
∑r
i=1 σi(X)) for

matrices are also convex. Here σi are the singular values of X. Spectral norm and trace norm are analogous
to L∞ and L1 norm.

4.2.2 Indicator function

If a set C is convex then,

IC(x) =

{
0 x ∈ C
∞ x /∈ C

The above indicator function is convex

4.2.3 Support function

For an set C, it’s support function
I∗C(x) = max

y∈C
xT y

is convex. Note that the I∗ shows that support function is conjugate to indicator function.

4-1



4-2 Lecture 4: September 9

4.3 Operations preserving convexity

• Non-negative linear combinations

• Point-wise maximization: max fi(x), . . . , fk(x) is convex if f1, . . . , fk are convex.

• Partial minimization: g(x, y) is convex in x, y and C is convex then f(x) miny∈C g(x, y) is convex.

4.3.1 Example: Distances to a set

C is an arbitrary set, consider the maximum distance to C under arbitrary norm,‖·‖. The following is always
convex using the convexity of ‖x− y‖ for fixed y and pointwise maximization rule.

f(x) = max
y∈C
‖x− y‖

Consider minimum distance to C:

f(x) = min
y∈C
‖x− y‖

Using the convexity of ‖x− y‖ for x, y jointly and assuming C to be convex, th above would be convex.

4.4 More operations preserving convexity

• Affine composition: if f is convex, so is g(x) = f(Ax+ b)

• General composition: If f = h ◦ g, then f is convex when

– h is convex, g is convex and h is non-decreasing

– h is convex, g is concave and h is non-increasing

and f is concave when

– h is concave, g is convex and h is non-decreasing

– h is concave, g is concave and h is non-increasing

To remember these consider f : R→ R and check for sign of f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x).

• Vector composition: Consider f(x) = h(g(x)) = h(g1(x), · · · , gk(x)) where f : Rn → R, h : Rk → R
and g : Rn → Rk. Then f is convex when

– h is convex, non-decreasing for each argument and g is convex

– h is convex, non-increasing for each argument and g is concave

and f is concave when

– h is concave, non-decreasing for each argument and g is convex

– h is concave, non-increasing for each argument and g is concave

Exercise: Check that the log-sum-exponential/softmax function is convex.
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4.5 Examples: Strict Convexity

∇2f(x) � 0 =⇒ f is strictly convex. However, the reverse isn’t guaranteed to be true, strict convexity does
not imply ∇2f(x) � 0.

Example: f(x) = e−x then f ′′(x) > 0 ∃ m s.t. f ′′(x) ≥ m.

If f(x) is strictly convex, it is not guaranteed to be strongly convex.

Example: f(x) = x4 is strictly convex but its second derivative, f ′′(0) = 0 is not strictly positive (necessary
for strong convexity).

4.6 First order optimality condition

For a convex problem
min
x
f(x) subject to x ∈ C

and a differentiable f , a feasible point is optimal iff

∇f(x)T (y − x) ≥ 0

In other words, all feasible directions from x are aligned with gradient. When the optimization is uncon-
strained, this reduces to ∇f(x) = 0

While this is a very general condition, it is difficult to check for most problems and hence is not very useful.

4.6.1 Examples

4.6.1.1 Quadratic minimization

Consider minimizing f(x) = 1
2x

TQx+ bTx+ c where Q � 0. Optimality condition is

∇f(x) = Qx+ b = 0

• If Q � 0, x = −Q−1b is a unique solution

• If Q is singular and b /∈ col(Q), there are no solutions

• If Q is singular and b ∈ col(Q), there are infinite solutions x = Q+b+ z, where Q+ is the pseudoinverse
and z ∈ null(Q)

4.6.1.2 Projection on a convex set

Consider projection on convex set C

min
x
‖a− x‖22 subject to x ∈ C
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According to first order optimality condition,

∇f(x)T (y − x) = (a− x)T (y − x) ≥ 0 ∀ y ∈ C

This says that a− x ∈ NC(x) where N is the normal cone.

4.7 Relaxing non-affine equalities

Given an optimization problem

minxf(x) subject to x ∈ C

, when can take a larger set C̃ ⊇ C and consider x ∈ C̃.

This is called a relaxation and its optimal value is always smaller or equal to that of the original problem.

4.7.1 Special case: relaxing non-affine equality constraints

Constraints of the form hj(x) = 0, j = 1, . . . , r where hj are convex but not affine can be replaced with
hj(x) ≤ 0, j = 1, . . . , r

4.7.1.1 Example: maximum utility problem

Consider the maximum utility problem

max
x,b

T∑
t=1

αtu(xt)

subject to bt+1 = bt + f(bt)− xt, t = 1, . . . , T

0 ≤ xt ≤ bt, t = 1, . . . , T

Here bt is the budget and xt is the amount consumed at time t; f is an investment return function, u
utility function, both concave and increasing. This is not a convex optimization problem unless we relax the
constraint to bt+1 ≤ bt + f(bt)− xt, t = 1, . . . , T

4.7.2 Example: PCA

Given X ∈ Rn×p, consider the low rank approximation problem

min
R
‖X −R‖2F subject to rank(R) = k

Let R = XZ, subject to rank(Z) = k where Z is a projection matrix. Then the problem becomes

min
Z∈Sp

‖X −XZ‖2F ⇐⇒ max
Z∈Sp

tr(SZ)

where S = XTX.
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The constraint set is non-convex. C = {Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, . . . , p, tr(Z) = k} where λi are the
eigenvalues of Z.

We can relax this constraint set to

Fk = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . , p, tr(Z) = k}
= {Z ∈ Sp : 0 � Z � 1, tr(Z) = k}

Here Fk is called a fantope which is analogous to polytopes but for matrices.

4.8 Canonical Problems

The 4 canonical problems described in these notes relate to each other according to the high level picture
shown below (from lecture slides).

1. Linear Programs (LPs)

2. Quadratic Programs (QPs)

3. Semidefinite Programs (SDPs)

4. Conic Programs (CPs)

CVX solves conic programs generically using interior point methods. However, depending upon the problem
at hand, other methods can be faster for a given problem.

Convex problems are a small part of the broader soup of optimization problems which include non-convex
problems. However, non-convex is not a useful characterization for optimization problems because of how
overbroad the term is. For example, neural networks are continuous non-convex problems, while integer
programming is a combinatorial non-convex problem, both are very different from each other.

4.9 Linear Programs

Fundamental problem in convex optimization, which can be solved using the simplex algorithm (non-
iteratively) and interior point methods (iteratively). Any LP described in the Basic Form below can be
re-written in the Standard Form.

Basic Form

min
x
cTx, s.t Dx ≤ d and Ax = b

Standard Form

min
x
cTx, s.t Ax = b and x ≥ 0
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4.9.1 Example Problems

4.9.1.1 Diet: Find cheapest combination of foods that satisfies nutritional requirements

min
x
cTx, s.t Dx ≥ d and x ≥ 0

Interpretation of variables

• cj : per-unit cost of food j

• di : minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet

4.9.1.2 Transportation: Ship commodities from given sources to destinations at min cost

min
x

m∑
i=1

n∑
j=1

cijxij s.t.

n∑
j=1

xij ≤ si , i = 1, . . . ,m &

m∑
i=1

xij ≥ dj , j = 1, . . . , n & x ≥ 0

Interpretation of variables

• si : supply at source i

• dj : demand at destination j

• cij : per-unit shipping cost from i to j

• xij : units shipped from i to j

4.9.1.3 Basis Pursuit

Given y ∈ Rn and X ∈ Rn×p, where p > n. Suppose that we seek the sparsest solution to under-determined
linear system Xβ = y.

We can draft a non-convex formulation (recall ||β||0 =
∑p
j=1 Iβj 6=0 is the L0 norm)

min
β
||β||0 s.t Xβ = y

The L1 approximation of the non-convex problem above is referred to as Basis Pursuit

min
β
||β||1 s.t Xβ = y

and can be cast as a linear program as shown below

min
β,z

1T z s.t Xβ = y & z ≥ β & z ≥ −β
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4.9.1.4 Dantzig Selector

The Dantzig Selector is a modification of the Basis Pursuit problem, where we allow Xβ ≈ y instead of
seeking an exact solution. This can be formulated as

min
β
||β||1 s.t ||XT (y −Xβ)||∞ ≤ λ

with λ ≥ 0 as a tuning parameter.


