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2.1 Convex Optimization Problem

A convex optimization problem is of the form:

min
x∈D

f(x)

subject to
gi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., r

where f and gi are all convex , and hj are affine. Any local minimizer of a convex optimization problem is
a global minimizer.

2.2 Convex Sets

2.2.1 Definitions

Definition 2.1 Convex set: a set C ⊆ Rn is a convex set if for any x, y ∈ C, we have

tx+ (1− t)y ∈ C, for all 0 ≤ t ≤ 1

Definition 2.2 Convex combination of x1, ..., xk ∈ Rn: any linear combination

θ1x1 + ...+ θkxk, with θi ≥ 0, and
∑k

i=1
θi = 1

Definition 2.3 Convex hull of set C: all convex combinations of elements in C. The convex hull is always
convex.

Definition 2.4 Cone: a set C ⊆ Rn is a cone if for any x ∈ C, we have tx ∈ C for all t ≥ 0

Definition 2.5 Convex cone: a cone that is also convex, i.e.,

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0
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Definition 2.6 Conic combination of x1, ..., xk ∈ R: any linear combination

θ1x1 + ...+ θkxk, with θi ≥ 0

Definition 2.7 Conic hull of set C: all conic combinations of elements in C.

2.2.2 Examples of convex sets

• Empty set, point, line.

• Norm ball: {x : ‖x‖ ≤ r}, for given norm ‖·‖, radius r.

• Hyperplane: {x : aTx = b}, for given a, b.

• Halfspace: {x : aTx ≤ b}.

• Affine space: {x : Ax = b}, for given A, b.

• Polyhedron: {x : Ax ≤ b}, where ≤ is interpreted componentwise. The set {x : Ax ≤ b, Cx = d} is
also a polyhedron.

• Simplex: special case of polyhedra, given by conv{x0, ..., xk}, where these points are affinely indepen-
dent. The canonical example is the probability simplex,

conv{e1, ..., en} = {w : w ≥ 0, 1Tw = 1}

2.2.3 Examples of convex cones

• Norm cone: {(x, t) : ‖x‖ ≤ t}, for given norm ‖·‖. It is called second-order cone under the l2 norm
‖·‖2.

• Normal cone: given any set C and point x ∈ C, the normal cone is

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

This is always a convex cone, regardless of C.

• Positive semidefinite cone:
Sn+ = {X ∈ Sn : X � 0}

where X � 0 means that X is positive semidefinite (Sn is the set of n× n symmetric matrices).

2.2.4 Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane
them. Formally, if C,D are nonempty convex sets with C ∩D = ∅, then there exists a, b such that

C ⊆ {x : aTx ≤ b}, D ⊆ {x : aTx ≥ b}

• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane
passing through it. Formally, if C is a nonempty convex set, and x0 ∈ bd(C), then there exists a such
that

C ⊆ {x : aTx ≤ aTx0}
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2.2.5 Operations preserving convexity

2.2.5.1 Operations

• Intersection: the intersection of convex sets is convex.

• Scaling and translation: if C is convex, then aC + b = {ax+ b : x ∈ C} is convex for any a, b.

• Affine images and preimages: if f(x) = Ax+ b and C is convex, then f(C) = {f(x) : x ∈ C} is convex,
and if D is convex, then f−1(D) = {x : f(x) ∈ D} is convex. Compared to scaling and translation,
this operation also has rotation and dimension reduction.

• Perspective images and preimages: the perspective function is P : Rn×R++ → Rn (where R++ denotes
positive reals),

P (x, z) = x/z

for z > 0. If C ⊆ dom(P ) is convex then so is P (C), and if D is convex then so is P−1(D).

• Linear-fractional images and preimages: the perspective map composed with an affine function,

f(x) =
Ax+ b

cTx+ d

is called a linear-fractional function, defined on cTx+ d > 0. If C ⊆ dom(f) is convex then so is f(C),
and if D is convex then so is f−1(D).

2.2.5.2 Example: linear matrix inequality solution set

Given A1, ..., Ak, B ∈ Sn, a linear matrix inequality is of the form

x1A1 + x2A2 + ...+ xkAk � B

for a variable x ∈ Rk. Let’s prove the set C of points x that satisfy the above inequality is convex.

Approach 1: directly verify that x, y ∈ C ⇒ tx + (1 − t)y ∈ C. This follows by checking that, for any
v,

vT

(
B −

k∑
i=1

(txi + (1− t)yi)Ai)

)
v ≥ 0

Approach 2: let f : Rk → Sn, f(x) = B−
∑k

i=1 xiAi. Note that C = f−1(Sn+), affine preimage of convex set.

2.2.5.3 Example: conditional probability set

Let U, V be random variables over {1, ..., n}, {1, ...,m}. Let C ⊆ Rnm be a set of joint distributions for U, V ,
i.e., each p ∈ C defines joint probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e., each q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =

{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}

= f(C)

where f is a linear-fractional function, hence D is convex.
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2.3 Convex Functions

2.3.1 Definitions

Definition 2.8 Convex function: f: Rn → R such that the domain of function f dom(f) ⊆ Rn is convex.

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y), for 0 ≤ t ≤ 1

And all x, y ∈ dom(f)

In other words, the function lies below the line segment joining f(x) and f(y)

Definition 2.9 Concave function: opposite inequality of the definition above, so that

f concave⇔ −f convex

which is to say, f being concave implies -f being convex.

Important modifiers:

• Strictly Convex: f(tx+ (1− t)y) < tf(x) + (1− t)f(y), for x 6= y and 0 < t < 1.
In other words, f is convex and has greater curvature than a linear function.

• Strongly Convex: With parameter m > 0, f(−m
2 ||x||

2
2) is convex.

In other words, f is at least as convex as a quadratic function.

Note: strongly convex implies strictly convex, which subsequently implies convex. In equation format:

strongly convex⇒ strictly convex⇒ convex

2.3.2 Examples of convex and concave functions

• Univariate functions
(1) Exponential function: eax is convex for any a over R
(2) Power function: xa is convex for a ≥ 1 or a ≤ 0 over R+ (nonnegative reals); xa is concave for
0 ≤ a ≤ 1 over R+

(3) Logarithmic function: log(x) is concave over R++

• Affine function: aTx+ b is both convex and concave.

• Quadratic function: 1
2x

TQx+ bTx+ c is convex provided that Q ≥ 0 (positive semidefinite)

• Least squares loss: ||y −Ax||22 is always convex (since ATA is always positive semidefinite)

• ||x|| is convex for any norm, for example: lp norms

||x||p = (

n∑
i=1

xip)1/p for p ≥ 1, ||x||∞ = max
i=1,...n

|xi|

as well as operator (spectral) and trace (nuclear) norms

||X||op = σ1(X), ||X||tr =

r∑
i=1

σr(X)

where σ1(X) ≥ ... ≥ σr(X) ≥ 0 are the singular values of the matrix X.
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• Indicator function: if C is convex, then its indicator function

IC(x) =

{
0, x ∈ C
∞, x /∈ C

is convex

• Support function: for any set C (convex or not), its support function

I∗C(x) = max
y∈C

xT y

is convex

• Max function: f(x) = max{x1, ...xn} is convex.

2.3.3 Key properties of convex functions

• A function is convex if and only if its restriction to any line is convex

• Epigraph characterization: a function f is convex if and only if its epigraph

epi(f) = (x, t) ∈ dom(f)× R : f(x) ≤ t

is a convex set.

• Convex sublevel sets: if f is convex, then its sublevel sets

x ∈ dom(f) : f(x) ≤ t

are convex, for all t ∈ R. The converse is not true.

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex function ∇f(x) = 0⇔ x minimizes f .

• Second-order characterization: if f is twice differentiable, then f is convex if and only if dom(f) is
convex, and ∇2f(x) ≥ 0 for all x ∈ dom(f).

• Jensen’s inequality: if f is convex, and X is a random variable supported on dom(f), then f(E[X]) ≤
E[f(x)].

• Long-sum-exp function: g(x) = log(
∑k

i=1 e
aT
i x+bi) for fixed ai, bi. This is often called the soft max,

since it smoothly approximates maxi=1,...,k(aTi x+ bi).

2.3.4 Operations preserving convexity

• Nonnegative linear combination: f1, ...fm convex implies a1f1 + ... + amfm is also convex for any
a1, ...am ≥ 0.

• Pointwise maximization: if fs is convex for any s ∈ S, then f(x) = maxs∈S is also convex.
Note: the set S is the number of functions fx, which can be infinite.
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• Partial minimization: if g(x, y) is convex in x, y, and C is convex, then f(x) = miny∈Cg(x, y) is convex.

• Affine composition: if f is convex, then g(x) = f(Ax+ b) is convex.

• General composition: suppose f = hg, where g : Rn → R, h : R→ R, f : Rn → R. Then:
(1) f is convex if h is convex and nondecreasing, g is convex
(2) f is convex if h is convex and nonincreasing, g is concave
(3) f is concave if h is concave and nondecreasing, g is concave
(4) f is convex if h is convex and nonincreasing, g is convex
Note: To memorize this, think of the chain rule when n = 1:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)

• Vector composition: suppose that:

f(x) = h(g(x)) = h(g1(x), ..., gk(x))

where g : Rn → Rk, h : Rk → R, f : Rn → R. Then:
(1) f is convex if h is convex and nondecreasing in each argument, g is convex
(2) f is convex if h is convex and nonincreasing in each argument, g is concave
(3) f is concave if h is concave and nondecreasing in each argument, g is concave
(4) f is concave if h is concave and nonincreasing in each argument, g is convex


