10-725/36-725: Convex Optimization

Lecturer: Ryan Tibshirani

Lecture 2: August 28

Scribes: Shuyang Yang, Xingyu Liu, Bo Lei

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

2.1 Convex Optimization Problem

A convex optimization problem is of the form:

$$\min_{x \in D} f(x)$$

subject to

$$g_i(x) \le 0, \ i = 1, ..., m$$

 $h_j(x) = 0, \ j = 1, ..., r$

where f and g_i are all convex, and h_j are affine. Any local minimizer of a convex optimization problem is a global minimizer.

2.2 Convex Sets

2.2.1 Definitions

Definition 2.1 Convex set: a set $C \subseteq \mathbb{R}^n$ is a convex set if for any $x, y \in C$, we have

$$tx + (1-t)y \in C$$
, for all $0 \le t \le 1$

Definition 2.2 Convex combination of $x_1, ..., x_k \in \mathbb{R}^n$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$
, with $\theta_i \ge 0$, and $\sum_{i=1}^k \theta_i = 1$

Definition 2.3 Convex hull of set C: all convex combinations of elements in C. The convex hull is always convex.

Definition 2.4 Cone: a set $C \subseteq \mathbb{R}^n$ is a cone if for any $x \in C$, we have $tx \in C$ for all $t \geq 0$

Definition 2.5 Convex cone: a cone that is also convex, i.e.,

$$x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \text{ for all } t_1, t_2 \geq 0$$

Fall 2019

Definition 2.6 Conic combination of $x_1, ..., x_k \in \mathbb{R}$: any linear combination

$$\theta_1 x_1 + \ldots + \theta_k x_k$$
, with $\theta_i \ge 0$

Definition 2.7 Conic hull of set C: all conic combinations of elements in C.

2.2.2 Examples of convex sets

- Empty set, point, line.
- Norm ball: $\{x : ||x|| \le r\}$, for given norm $||\cdot||$, radius r.
- Hyperplane: $\{x : a^T x = b\}$, for given a, b.
- Halfspace: $\{x : a^T x \leq b\}.$
- Affine space: $\{x : Ax = b\}$, for given A, b.
- Polyhedron: $\{x : Ax \leq b\}$, where \leq is interpreted componentwise. The set $\{x : Ax \leq b, Cx = d\}$ is also a polyhedron.
- Simplex: special case of polyhedra, given by $conv\{x_0, ..., x_k\}$, where these points are affinely independent. The canonical example is the probability simplex,

$$\operatorname{conv}\{e_1, ..., e_n\} = \{w : w \ge 0, 1^T w = 1\}$$

2.2.3 Examples of convex cones

- Norm cone: $\{(x,t) : ||x|| \le t\}$, for given norm $||\cdot||$. It is called second-order cone under the l_2 norm $||\cdot||_2$.
- Normal cone: given any set C and point $x \in C$, the normal cone is

$$\mathcal{N}_C(x) = \{g : g^T x \ge g^T y, \text{ for all } y \in C\}$$

This is always a convex cone, regardless of C.

• Positive semidefinite cone:

$$\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n : X \succeq 0 \}$$

where $X \succeq 0$ means that X is positive semidefinite (\mathbb{S}^n is the set of $n \times n$ symmetric matrices).

2.2.4 Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have a separating between hyperplane them. Formally, if C, D are nonempty convex sets with $C \cap D = \emptyset$, then there exists a, b such that

$$C \subseteq \{x : a^T x \le b\}, \ D \subseteq \{x : a^T x \ge b\}$$

• Supporting hyperplane theorem: a boundary point of a convex set has a supporting hyperplane passing through it. Formally, if C is a nonempty convex set, and $x_0 \in bd(C)$, then there exists a such that

$$C \subseteq \{x : a^T x \le a^T x_0\}$$

2.2.5 Operations preserving convexity

2.2.5.1 Operations

- Intersection: the intersection of convex sets is convex.
- Scaling and translation: if C is convex, then $aC + b = \{ax + b : x \in C\}$ is convex for any a, b.
- Affine images and preimages: if f(x) = Ax + b and C is convex, then $f(C) = \{f(x) : x \in C\}$ is convex, and if D is convex, then $f^{-1}(D) = \{x : f(x) \in D\}$ is convex. Compared to scaling and translation, this operation also has rotation and dimension reduction.
- Perspective images and preimages: the perspective function is $P : \mathbb{R}^n \times \mathbb{R}_{++} \to \mathbb{R}^n$ (where \mathbb{R}_{++} denotes positive reals),

$$P(x,z) = x/z$$

for z > 0. If $C \subseteq \text{dom}(P)$ is convex then so is P(C), and if D is convex then so is $P^{-1}(D)$.

• Linear-fractional images and preimages: the perspective map composed with an affine function,

$$f(x) = \frac{Ax+b}{c^T x + d}$$

is called a linear-fractional function, defined on $c^T x + d > 0$. If $C \subseteq \text{dom}(f)$ is convex then so is f(C), and if D is convex then so is $f^{-1}(D)$.

2.2.5.2 Example: linear matrix inequality solution set

Given $A_1, ..., A_k, B \in \mathbb{S}^n$, a linear matrix inequality is of the form

$$x_1A_1 + x_2A_2 + \dots + x_kA_k \preceq B$$

for a variable $x \in \mathbb{R}^k$. Let's prove the set C of points x that satisfy the above inequality is convex.

Approach 1: directly verify that $x, y \in C \Rightarrow tx + (1 - t)y \in C$. This follows by checking that, for any v,

$$v^T \left(B - \sum_{i=1}^k (tx_i + (1-t)y_i)A_i) \right) v \ge 0$$

Approach 2: let $f : \mathbb{R}^k \to \mathbb{S}^n$, $f(x) = B - \sum_{i=1}^k x_i A_i$. Note that $C = f^{-1}(\mathbb{S}^n_+)$, affine preimage of convex set.

2.2.5.3 Example: conditional probability set

Let U, V be random variables over $\{1, ..., n\}$, $\{1, ..., m\}$. Let $C \subseteq \mathbb{R}^{nm}$ be a set of joint distributions for U, V, i.e., each $p \in C$ defines joint probabilities

$$p_{ij} = \mathbb{P}(U = i, V = j)$$

Let $D \subseteq \mathbb{R}^{nm}$ contain corresponding **conditional distributions**, i.e., each $q \in D$ defines

$$q_{ij} = \mathbb{P}(U = i | V = j)$$

Assume C is convex. Let's prove that D is convex. Write

$$D = \left\{ q \in \mathbb{R}^{nm} : q_{ij} = \frac{p_{ij}}{\sum_{k=1}^{n} p_{kj}}, \text{ for some } p \in C \right\} = f(C)$$

where f is a linear-fractional function, hence D is convex.

2.3 Convex Functions

2.3.1 Definitions

Definition 2.8 Convex function: $f: \mathbb{R}^n \to \mathbb{R}$ such that the domain of function $f \operatorname{dom}(f) \subseteq \mathbb{R}^n$ is convex.

 $f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \text{ for } 0 \le t \le 1$

And all $x, y \in dom(f)$

In other words, the function lies below the line segment joining f(x) and f(y)

Definition 2.9 Concave function: opposite inequality of the definition above, so that

 $f \ concave \Leftrightarrow -f \ convex$

which is to say, f being concave implies -f being convex.

Important modifiers:

- Strictly Convex: f(tx + (1 t)y) < tf(x) + (1 t)f(y), for $x \neq y$ and 0 < t < 1. In other words, f is convex and has greater curvature than a linear function.
- Strongly Convex: With parameter m > 0, $f(-\frac{m}{2}||x||_2^2)$ is convex. In other words, f is at least as convex as a quadratic function.

Note: strongly convex implies strictly convex, which subsequently implies convex. In equation format:

 $strongly \ convex \Rightarrow strictly \ convex \Rightarrow convex$

2.3.2 Examples of convex and concave functions

- Univariate functions
 - (1) Exponential function: e^{ax} is convex for any a over \mathbb{R}

(2) Power function: x^a is convex for $a \ge 1$ or $a \le 0$ over \mathbb{R}_+ (nonnegative reals); x^a is concave for $0 \le a \le 1$ over \mathbb{R}_+

- (3) Logarithmic function: log(x) is concave over R_{++}
- Affine function: $a^T x + b$ is both convex and concave.
- Quadratic function: $\frac{1}{2}x^TQx + b^Tx + c$ is convex provided that $Q \ge 0$ (positive semidefinite)
- Least squares loss: $||y Ax||_2^2$ is always convex (since $A^T A$ is always positive semidefinite)
- ||x|| is convex for any norm, for example: l_p norms

$$||x||_p = (\sum_{i=1}^n x_p^i)^{1/p} \text{ for } p \ge 1, ||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

as well as operator (spectral) and trace (nuclear) norms

$$||X||_{op} = \sigma_1(X), ||X||_{tr} = \sum_{i=1}^r \sigma_r(X)$$

where $\sigma_1(X) \ge ... \ge \sigma_r(X) \ge 0$ are the singular values of the matrix X.

• Indicator function: if C is convex, then its indicator function

$$I_C(x) = \begin{cases} 0, x \in C\\ \infty, x \notin C \end{cases}$$

is convex

• Support function: for any set C (convex or not), its support function

$$I_C^*(x) = \max_{y \in C} x^T y$$

is convex

• Max function: $f(x) = max\{x_1, ..., x_n\}$ is convex.

2.3.3 Key properties of convex functions

- A function is convex if and only if its restriction to any line is convex
- Epigraph characterization: a function f is convex if and only if its epigraph

$$epi(f) = (x, t) \in dom(f) \times \mathbb{R} : f(x) \le t$$

is a convex set.

• Convex sublevel sets: if f is convex, then its sublevel sets

$$x \in dom(f) : f(x) \le t$$

are convex, for all $t \in \mathbb{R}$. The converse is not true.

• First-order characterization: if f is differentiable, then f is convex if and only if dom(f) is convex, and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in dom(f)$. Therefore for a differentiable convex function $\nabla f(x) = 0 \Leftrightarrow x$ minimizes f.

- Second-order characterization: if f is twice differentiable, then f is convex if and only if dom(f) is convex, and $\nabla^2 f(x) \ge 0$ for all $x \in dom(f)$.
- Jensen's inequality: if f is convex, and X is a random variable supported on dom(f), then $f(\mathbb{E}[X]) \leq \mathbb{E}[f(x)]$.
- Long-sum-exp function: $g(x) = log(\sum_{i=1}^{k} e^{a_i^T x + b_i})$ for fixed a_i, b_i . This is often called the soft max, since it smoothly approximates $\max_{i=1,\dots,k} (a_i^T x + b_i)$.

2.3.4 Operations preserving convexity

- Nonnegative linear combination: $f_1, ..., f_m$ convex implies $a_1f_1 + ... + a_mf_m$ is also convex for any $a_1, ..., a_m \ge 0$.
- Pointwise maximization: if f_s is convex for any s ∈ S, then f(x) = max_{s∈S} is also convex.
 Note: the set S is the number of functions f_x, which can be infinite.

- Partial minimization: if g(x, y) is convex in x, y, and C is convex, then $f(x) = \min_{y \in C} g(x, y)$ is convex.
- Affine composition: if f is convex, then g(x) = f(Ax + b) is convex.
- General composition: suppose f = hg, where $g : \mathbb{R}^n \to \mathbb{R}, h : \mathbb{R} \to \mathbb{R}, f : \mathbb{R}^n \to \mathbb{R}$. Then:
 - (1) f is convex if h is convex and nondecreasing, g is convex
 - (2) f is convex if h is convex and nonincreasing, g is concave
 - (3) f is concave if h is concave and nondecreasing, g is concave
 - (4) f is convex if h is convex and nonincreasing, g is convex

Note: To memorize this, think of the chain rule when n = 1:

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

• Vector composition: suppose that:

$$f(x) = h(g(x)) = h(g_1(x), ..., g_k(x))$$

where $g: \mathbb{R}^n \to \mathbb{R}^k, h: \mathbb{R}^k \to \mathbb{R}, f: \mathbb{R}^n \to \mathbb{R}$. Then:

- (1) f is convex if h is convex and nondecreasing in each argument, g is convex
- (2) f is convex if h is convex and nonincreasing in each argument, g is concave
- (3) f is concave if h is concave and nondecreasing in each argument, g is concave
- (4) f is concave if h is concave and nonincreasing in each argument, g is convex