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3.1 Optimization terminology

The following defines a convex optimization problem/program:

minimize
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.1)

where f and gi, i = 1, . . . ,m are all convex, and the optimization domain is D = dom(f) ∩
m⋂
i=1

dom(gi).

Some related terminology:

• f is called criterion or objective function

• gi is called inequality constraint function

• If x ∈ D, gi(x) ≤ 0, i = 1, . . . ,m, and Ax = b then x is called a feasible point

• The minimum of f(x) over all feasible points x ∈ D is called the optimal value, written f∗

• If x is feasible and f(x) = f∗, then x os called optimal, solution or minimizer

• If x is feasible and f(x) ≤ f∗ + ε, then x is called ε-suboptimal

• If x is feasible and gi(x) = 0, then we say gi is active at x

• Convex minimization can be reposed as concave maximization. (3.1) is equivalent to

maximize
x∈D

− f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b.

We call both convex optimization problems.
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3.1.1 Solution Set

Let Xopt be the set of all solutions of a given convex problems, written

Xopt = argmin
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Lemma 3.1 Xopt is a convex set

Proof: Using definitions. If x, y ∈ Xopt, then for 0 ≤ t ≤ 1,

• gi(tx+ (1− t)y) ≤ tgi(x) + (1− t)gi(y) ≤ 0

• A(tx+ (1− t)y) = tAx+ (1− t)Ay = b

• f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) = f∗

It follows that tx+ (1− t)y) is also a solution.

Lemma 3.2 If f is strictly convex, then the solution is unique, i.e., Xopt contains only one element.

3.1.2 Example: lasso

Given y ∈ Rn, X ∈ Rn×p, consider the lasso problem:

min
β∈Rp

‖y −Xβ‖22

subject to ‖β‖1 ≤ s

Is this convex? What is the criterion function? The inequality andequality constraints? Feasible set? Is the
solution unique, when:

• n ≥ p and X has full column rank?

• n ≤ p (high-dimensional case)?

How do our answers change if we changed criterion to Huber loss:

n∑
i=1

ρ(yi − xᵀi β), ρ

{
1
2z

2, |z| ≤ δ
δ|z| − 1

2δ
2, otherwise

3.1.3 Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, . . . , xn, consider the support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=0

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
ᵀ
i β + β0) ≥ 1− ξi, i = 1, . . . , n
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Is this convex? What is the criterion, constraints, feasible set? Is the solution (β, β0, ξ) unique? What if we
changed the criterion to

1

2
‖β‖22 +

1

2
β2
0 + C

n∑
i=0

ξ1.01i

For original criterion, what about β component, at the solution?

3.1.4 Local Minima are Global Minima

It turns out that for convex optimization problems, any local solution is also gloabally optimal. Formally,
we are saying that whenever f is a convex function, if there exists an R > 0 such that f(x) ≤ f(y) whenever
||x− y||2 ≤ R then f(x) ≤ f(y) for all y.

3.1.5 Rewriting Constraints

There are multiple ways to write down an optimization problem. Previously we wrote them as

minimize
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.2)

however this is equivalent to writing

min
x
f(x) subject to x ∈ C (3.3)

where C = {x : gi(x) ≤ 0, i = 1, . . . ,m,Ax = b} is the feasible set. Another way of writing the same problem
is

min
x
f(x) + IC(x) (3.4)

where IC is the indicator of C.

3.1.6 Partial Optimization

We have previously seen that if a function f(x, y) is convex in both arguments and if C is a convex set,
then the function g(x) = miny∈C f(x, y) is also convex in x. This allows us to partially optimize a convex
problem and still retain convexity guarantees. For example

minimize
x1,x2

f(x1, x2)

subject to g1(x1) ≤ 0

g2(x2) ≤ 0

(3.5)

is equivalent to

minimize
x1

f̃(x1)

subject to g1(x1) ≤ 0
(3.6)

where f̃(x1) = min{f(x1, x2) : g(x2) ≤ 0}.
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3.1.7 Hierarchy of Convex Programs

It turns out that there are a bunch of interesting sub-classes of convex problems. Some of these include linear
programs, qudaratic programs semidefinite programs and cone programs. These programs can be related
as follows: Linear Programs ⊂ Quadratic Programs ⊂ Semidefinite Programs ⊂ Conic Programs ⊂ Convex
Programs.

3.1.8 Linear Programs

A linear program is a special type of convex program. Any program that can be formulated as

minimize
x

cTx

subject to Dx ≤ d
Ax = b

(3.7)

is a linear program. Some methods for solving linear programs are the simplex algorithm and interior point
methods.

3.1.9 Geometric Programming

A monomial is a function f : Rn++ → R of the form:

f (x) = γxa11 x
a2
2 · · ·xann

for γ > 0, a1, a2, · · · , an ∈ R.

A posynomial is a sum of monomials,

f (x) =

p∑
k=1

γkx
ak1
1 xa2k2 · · ·xakn

n

.

A geometric program is of the form:

minimize
x

f (x)

subject to gi (x) ≤ 1, i = 1, . . . ,m

hj (x) = 1, j = 1, . . . , r

(3.8)

where f, gi, i = 1, . . . ,m are posynomials and hj , j = 1, . . . , r are monomials. This is non-convex.

Given f (x) = γxa11 x
a2
2 · · ·xann , let yi = log xi and rewrite this as:

γ(ey1)
a1(ey2)

a2 · · · (eyn)
an = ea

T y+b

for b = log γ.

Also, a posynomial can be written as
p∑
k=1

ea
T
k y+bk . With this variable substitution, and after taking logs, a
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geometric program is equivalent to:

minimize
x

log

(
p0∑
k=1

ea
T
0ky+b0k

)

subject to log

(
pi∑
k=1

ea
T
iky+bik

)
≤ 0, i = 1, . . . ,m

cTj y + dj = 0, j = 1, . . . , r

(3.9)

This is convex (recalling the convexity of softmax functions).

3.1.10 Eliminating Equality Constraints

Important special case of change of variables: eliminating equality constraints. Given the problem:

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.10)

we can always express any feasible point as x = My + x0, where Ax0 = b and col(M)=null(A). Hence the
above is equivalent to:

minimize
x

f (My + x0)

subject to gi (My + x0) ≤ 0, i = 1, . . . ,m
(3.11)

3.1.11 Introducing Slack Variables

Essentially opposite to eliminating equality contraints: introducing slack variables. Given the problem:

minimize
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . ,m

Ax = b

(3.12)

we can transform the inequality constraints via:

minimize
x,s

f (x)

subject to si ≥ 0, i = 1, . . . ,m

gi (x) + si = 0, i = 1, . . . ,m

Ax = b

(3.13)


