10-725/36-725: Convex Optimization	Fall 2019
Lecture 3: September 4	
Lecturer: Lecturer: Ryan Tibshirani	Scribes: Scribes: oneopane, ruogulin,2, rschmuck

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Optimization terminology

The following defines a convex optimization problem/program:

$$\begin{array}{ll} \underset{x \in D}{\text{minimize}} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m \\ & Ax = b \end{array}$$

$$(3.1)$$

where f and g_i , i = 1, ..., m are all convex, and the optimization domain is $D = \text{dom}(f) \cap \bigcap_{i=1}^{m} \text{dom}(g_i)$. Some related terminology:

- f is called *criterion* or *objective* function
- g_i is called *inequality constraint* function
- If $x \in D$, $g_i(x) \leq 0$, i = 1, ..., m, and Ax = b then x is called a *feasible* point
- The minimum of f(x) over all feasible points $x \in D$ is called the *optimal value*, written f^*
- If x is feasible and $f(x) = f^*$, then x os called *optimal*, solution or minimizer
- If x is feasible and $f(x) \leq f^* + \epsilon$, then x is called ϵ -suboptimal
- If x is feasible and $g_i(x) = 0$, then we say g_i is active at x
- Convex minimization can be reposed as concave maximization. (3.1) is equivalent to

$$\begin{array}{ll} \underset{x \in D}{\operatorname{maximize}} & -f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m \\ & Ax = b. \end{array}$$

We call both convex optimization problems.

3.1.1 Solution Set

Let X_{opt} be the set of all solutions of a given convex problems, written

$$X_{opt} = \underset{x \in D}{\operatorname{argmin}} \qquad f(x)$$

subject to $g_i(x) \le 0, \ i = 1, \dots, m$
 $Ax = b$

Lemma 3.1 X_{opt} is a convex set

Proof: Using definitions. If $x, y \in X_{opt}$, then for $0 \le t \le 1$,

- $g_i(tx + (1-t)y) \le tg_i(x) + (1-t)g_i(y) \le 0$
- A(tx + (1 t)y) = tAx + (1 t)Ay = b
- $f(tx + (1-t)y) \le tf(x) + (1-t)f(y) = f^*$

It follows that tx + (1 - t)y is also a solution.

Lemma 3.2 If f is strictly convex, then the solution is unique, i.e., X_{opt} contains only one element.

3.1.2 Example: lasso

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, consider the lasso problem:

$$\min_{\beta \in \mathbb{R}^p} \qquad \|y - X\beta\|_2^2$$
 subject to $\|\beta\|_1 \le s$

Is this convex? What is the criterion function? The inequality and equality constraints? Feasible set? Is the solution unique, when:

- $n \ge p$ and X has full column rank?
- $n \le p$ (high-dimensional case)?

How do our answers change if we changed criterion to Huber loss:

$$\sum_{i=1}^{n} \rho(y_i - x_i^{\mathsf{T}}\beta), \quad \rho \begin{cases} \frac{1}{2}z^2, & |z| \le \delta\\ \delta |z| - \frac{1}{2}\delta^2, & otherwise \end{cases}$$

3.1.3 Example: support vector machines

Given $y \in \{-1,1\}^n$, $X \in \mathbb{R}^{n \times p}$ with rows x_1, \ldots, x_n , consider the support vector machine or SVM problem:

$$\min_{\substack{\beta,\beta_0,\xi}} \quad \frac{1}{2} \|\beta\|_2^2 + C \sum_{i=0}^n \xi_i$$

subject to $\xi_i \ge 0, \ i = 1, \dots, n$
 $y_i(x_i^{\mathsf{T}}\beta + \beta_0) \ge 1 - \xi_i, \ i = 1, \dots, n$

Is this convex? What is the criterion, constraints, feasible set? Is the solution (β, β_0, ξ) unique? What if we changed the criterion to

$$\frac{1}{2}\|\beta\|_2^2 + \frac{1}{2}\beta_0^2 + C\sum_{i=0}^n \xi_i^{1.01}$$

For original criterion, what about β component, at the solution?

3.1.4 Local Minima are Global Minima

It turns out that for convex optimization problems, any local solution is also gloabally optimal. Formally, we are saying that whenever f is a convex function, if there exists an R > 0 such that $f(x) \le f(y)$ whenever $||x - y||_2 \le R$ then $f(x) \le f(y)$ for all y.

3.1.5 Rewriting Constraints

There are multiple ways to write down an optimization problem. Previously we wrote them as

$$\begin{array}{ll} \underset{x \in D}{\operatorname{minimize}} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \ i = 1, \dots, m \\ & Ax = b \end{array}$$

$$(3.2)$$

however this is equivalent to writing

$$\min_{x} f(x) \text{ subject to } x \in C \tag{3.3}$$

where $C = \{x : g_i(x) \le 0, i = 1, ..., m, Ax = b\}$ is the feasible set. Another way of writing the same problem is

$$\min_{x} f(x) + I_C(x) \tag{3.4}$$

where I_C is the indicator of C.

3.1.6 Partial Optimization

We have previously seen that if a function f(x, y) is convex in both arguments and if C is a convex set, then the function $g(x) = \min_{y \in C} f(x, y)$ is also convex in x. This allows us to partially optimize a convex problem and still retain convexity guarantees. For example

$$\begin{array}{ll} \underset{x_1,x_2}{\text{minimize}} & f(x_1,x_2) \\ \text{subject to} & g_1(x_1) \leq 0 \\ & g_2(x_2) \leq 0 \end{array}$$
(3.5)

is equivalent to

$$\begin{array}{ll} \underset{x_1}{\min \text{ initial } x_1} & \tilde{f}(x_1) \\ \text{subject to} & g_1(x_1) \le 0 \end{array} \tag{3.6}$$

where $\tilde{f}(x_1) = \min\{f(x_1, x_2) : g(x_2) \le 0\}.$

3.1.7 Hierarchy of Convex Programs

It turns out that there are a bunch of interesting sub-classes of convex problems. Some of these include linear programs, qudaratic programs semidefinite programs and cone programs. These programs can be related as follows: Linear Programs \subset Quadratic Programs \subset Semidefinite Programs \subset Conic Programs \subset Convex Programs.

3.1.8 Linear Programs

A linear program is a special type of convex program. Any program that can be formulated as

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & c^{T}x\\ \text{subject to} & Dx \leq d\\ & Ax = b \end{array}$$

$$(3.7)$$

is a linear program. Some methods for solving linear programs are the simplex algorithm and interior point methods.

3.1.9 Geometric Programming

A monomial is a function $f : \mathbb{R}^n_{++} \to \mathbb{R}$ of the form:

$$f(x) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

for $\gamma > 0, a_1, a_2, \cdots, a_n \in \mathbb{R}$.

A posynomial is a sum of monomials,

$$f(x) = \sum_{k=1}^{p} \gamma_k x_1^{a_{k1}} x_2^{a_{2k}} \cdots x_n^{a_{kn}}$$

A geometric program is of the form:

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & f\left(x\right) \\ \text{subject to} & g_{i}\left(x\right) \leq 1, i = 1, \dots, m \\ & h_{j}\left(x\right) = 1, j = 1, \dots, r \end{array}$$

$$(3.8)$$

where $f, g_i, i = 1, ..., m$ are posynomials and $h_j, j = 1, ..., r$ are monomials. This is non-convex. Given $f(x) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$, let $y_i = \log x_i$ and rewrite this as:

$$\gamma(e^{y_1})^{a_1}(e^{y_2})^{a_2}\cdots(e^{y_n})^{a_n}=e^{a^Ty+b}$$

for $b = \log \gamma$.

Also, a posynomial can be written as $\sum_{k=1}^{p} e^{a_k^T y + b_k}$. With this variable substitution, and after taking logs, a

geometric program is equivalent to:

$$\begin{array}{ll}
\text{minimize} & \log\left(\sum_{k=1}^{p_0} e^{a_{0k}^T y + b_{0k}}\right) \\
\text{subject to} & \log\left(\sum_{k=1}^{p_i} e^{a_{ik}^T y + b_{ik}}\right) \le 0, i = 1, \dots, m \\
& c_j^T y + d_j = 0, j = 1, \dots, r
\end{array}$$
(3.9)

This is convex (recalling the convexity of softmax functions).

3.1.10 Eliminating Equality Constraints

Important special case of change of variables: eliminating equality constraints. Given the problem:

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & f\left(x\right)\\ \text{subject to} & g_{i}\left(x\right) \leq 0, i = 1, \dots, m\\ & Ax = b \end{array} \tag{3.10}$$

we can always express any feasible point as $x = My + x_0$, where $Ax_0 = b$ and col(M)=null(A). Hence the above is equivalent to:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & f\left(My + x_0\right) \\ \text{subject to} & g_i\left(My + x_0\right) \le 0, i = 1, \dots, m \end{array}$$
(3.11)

3.1.11 Introducing Slack Variables

Essentially opposite to eliminating equality contraints: introducing slack variables. Given the problem:

$$\begin{array}{ll} \underset{x}{\operatorname{minimize}} & f\left(x\right)\\ \text{subject to} & g_{i}\left(x\right) \leq 0, i=1,\ldots,m\\ & Ax=b \end{array}$$

$$(3.12)$$

we can transform the inequality constraints via:

$$\begin{array}{ll} \underset{x,s}{\text{minimize}} & f\left(x\right) \\ \text{subject to} & s_i \ge 0, i = 1, \dots, m \\ & g_i\left(x\right) + s_i = 0, i = 1, \dots, m \\ & Ax = b \end{array}$$

$$(3.13)$$