
10-725/36-725: Convex Optimization Fall 2019

Lecture 19: October 30th Coordinate Descent
Lecturer: Lecturer: Ryan Tibshirani Scribes: Samuel Levy, Melda Korkut, Mingjie Sun

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

19.1 Recap from last time: numerical linear algebra

In Rn, the rough flop counts for basic operations are as follows:

• Vector-vector operations: n flops

• Matrix-vector multiplication: n2 flops

• Matrix-matrix multiplication: n3 flops

• Linear system solve: n3 flops

The operations with banded or sparse matrices are much cheaper.

Moreover, we have seen that there exists two classes of approaches for linear system solvers:

• Direct: QR decomposition, Cholesky decomposition.

– These methods require a number of iterations that is independent from the desired level of accu-
racy. In other words, the accuracy of those methods do not depend on the conditioning.

– Those methods are usually fast under sparsity but we need to worry special cases.

– Update/downdate efficiently (e.g. we can recompute the QR decomposition of A after adding or
deleting one row or column in O(n) time).

• Indirect: Jacobi, Gauss-Seidl, gradient descent, conjugate gradients.

– The accuracy of these methods vary. Furthermore, those methods are always faster under sparsity
of the A matrix.

19.2 Coordinatewise optimality

We focus here on a very simple technique that can be surprisingly efficient and scalable: coordinate descent
or more formally, coordinatewise minimization.

Coordinate descent answers the following question: given convex, differentiable f : Rn −→ R, if we are at a
point x such that f(x) is minimized along each coordinate axis, have we found a global minimizer? That is,
do we have:

f(x+ δei) ≥ f(x) for all δ, i⇒ f(x) = min
z
f(z)

19-1

19-2 Lecture 19: October 30 Coordinate Descent

The answer is yes, because for convex functions, f(x+δei) ≥ f(x) for all δ, i is equivalent to
(
∂f
∂x1

(x), ..., ∂f∂xn
(x)
)
.

Every partial derivative is zero, and each of these are also convex. An example of convex and differentiable
function is given in Figure 19.1.

Figure 19.1: Example of convex and differentiable function

Now, for f convex and not differentiable, coordinate descent does not lead to a global minimizer in general.
Figure 19.2 (right panel) illustrates why: since we try to change only one coordinate while fixing the other
one, we see that moving horizontally and right from the intersection between the two red dotted lines, we
observe an increase in the criterion; likewise, when we move vertically and up from the intersection between
the two red dotted lines, we also observe that the criterion increases. However, moving simultaneously to
the right hand upper corner, the criterion decreases (we get closer to the blue dot): coordinate descent fails.

Now, for f(x) = g(x) +
∑n
i=1 hi(xi) with g convex, smooth, and each hi convex (the nonsmooth part is

called separable), coordinate descent leads to global minimization.

Proof: Using convexity of g and subgradient optimality, we have:

0 ∈ ∇ig(x) + ∂hi(xi) (19.1)

⇐⇒ −∇ig(x) ∈ ∂hi(xi) (19.2)

⇐⇒ hi(yi) ≥ hi(xi)−∇ig(x)(yi − xi) (19.3)

⇐⇒ ∇ig(x)(yi − xi) + hi(yi)− hi(xi) ≥ 0 (19.4)

and by convexity of f , using the first-order characterization:

f(y)− f(x) = g(x)− g(y) +

n∑
i=1

[hi(yi)− hi(xi)] ≥
n∑
i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)] ≥ 0 (19.5)

Lecture 19: October 30 Coordinate Descent 19-3

Figure 19.2: Example of convex and nondifferentiable function: 3D plot (left panel) and contour plot (right
panel)

19.3 Coordinate descent

This suggests that for the problem

min
x
f(x) (19.6)

where f(x) = g(x) +
∑n
i=1 hi(xi), where g convex and differentiable and each hi convex, we can use coor-

dinate descent: let x(0) ∈ Rn, and repeat:

x
(k)
i = argminxi

f(x
(k)
1 , ..., x

(k)
i−1, xi, x

(k−1)
i+1 , ..., x(k−1)n), for i = 1, ..., n and k = 1, 2, 3...

In other words, we minimize with respect to one element xi, plug it back in f , and move to the next index.
Important note: we always use the most recent information possible.

Tseng (2001) showed that such f (provided f is continuous on compact set {x : f(x) ≤ f(x(0)} and f attains
its minimum), any limit point of x(k), k = 1, 2, 3... is a minimizer of f1.

A few notes for coordinate descent:

• The order of cycle through coordinates is arbitrary, we can use any permutation of {1,...,n};

• we can replace everywhere individual coordinates with blocks of coordinates - even blocks of coordinates
where there are repeated coordinates (e.g. 1,2,1,1,1,3,1,2) are acceptable, as long as we see them after
a linear time;

• The ”one-at-a-time” update scheme is critical, and ”all-at-once” scheme does not necessarily converge;

1Using basic real analysis, we know x(k) has subsequence converging to x∗ (Bolzano-Weierstrass) and f(x(k)) converges to
f∗ (monotone convergence)

19-4 Lecture 19: October 30 Coordinate Descent

Figure 19.3: Example of a function f(x) = g(x) +
∑n
i=1 hi(xi) with g convex, smooth, and each hi convex.

• The analogy for solving linear systems: Gauss-Seidel versus Jacobi method.

19.4 Example: linear regression

Given y ∈ Rn and X ∈ Rn×p with columns X1, ..., Xp, consider the linear regression problem:

min
β

1

2
‖ y −Xβ ‖22 (19.7)

Minimizing over βi, with all βj , j 6= i fixed:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y) (19.8)

where X−i and β−i are original matrix or vector with i -th column or element removed respectively.

Equation 19.8 is equivalent to:

βi =
XT
i (y −X−iβ−i)

XT
i Xi

(19.9)

Coordinate descent repeats this update for i = 1, 2, ..., p,

Note that the computational cost for one cycle of coordinate descent is O(np) where O(n) to compute
XT
i (y −X−iβ−i) for each update in a cycle (it is O(n) because we can precompute XT

i Xiβi), which is the
same as gradient descent. Each coordinate costs O(n) to update r, O(n) to compute XT

i r.

Equation 19.9 is equivalent to:

βi =
XT
i r

XT
i Xi

=
XT
i r

‖ Xi ‖22
+ βi (19.10)

Lecture 19: October 30 Coordinate Descent 19-5

where r = y −Xβ

We observe in Figure 19.5 how different methods converge, using 100 random instances with n = 100 and
p = 20. In particular, coordinate descent’s speed of convergence is comparable to the conjugate gradient for
linear regression.

Figure 19.4: Comparison of convergence for several first-order methods

19.5 Example: Lasso Regression

Given y ∈ Rn, and X ∈ Rn×p whose columns are X1, . . . , Xn, consider lasso problem with:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Notice that here ‖β‖1 is convex, not differentiable but separable, since ‖β‖1 =
∑p
i=1 |βi|. Minimizing over

βi we get

XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

19-6 Lecture 19: October 30 Coordinate Descent

where si ∈ ∂|βi|. By using soft-thresholding we get,

βi = Sλ/‖Xi‖22

(
XT
i (y −X−iβ−i)

XT
i Xi

)
Figure below shows proximal gradient vs coordinate descent for lasso regression. The coordinate gradient
descent here and gradient descent both share O(np) flops in each iteration.

Figure 19.5: Coordinate descent vs proximal gradient for lasso

19.6 Example: Box-constrained QP

Let b ∈ Rn, Q ∈ Sn+. A box-constrained QP is:

min
x

1

2
xTQx+ bTx subject to l ≤ x ≤ u

Notice that the box constraints are separable coordinate-wise.

I{l ≤ x ≤ u} =

n∑
i=1

I{li ≤ xi ≤ ui}

Minimizing over xi gives

xi = T[li,ui]

(
bi −

∑
j 6=iQijxj

Qii

)
where T[li,ui] is:

T[li,ui](z) =

 ui if z > ui;
z if li ≤ z ≤ ui
li if z < li

Lecture 19: October 30 Coordinate Descent 19-7

19.7 Example: Support Vector Machines

Coordinate descent can be applied to SVM dual problem:

min
α

1

2
αT X̃X̃Tα− 1Tα subject to 0 ≤ α ≤ C1, αT y = 0.

Notice that the equality constraint is not separable, so we cannot do the trick we did in the previous example.
So, Platt proposed Sequential minimal optimization algorithm. SMO does basically coordinate descent in
blocks of 2. Instead of cycling, it chooses the next block greedily. Using complementary slackness conditions

αi

(
1− ψi − (X̃β)i − yiβ0

)
= 0

(C − αi)ψi = 0

where β, β0, ψ are the primal coefficients, intercept and slacks respectively. β = X̃Tα and β0 is calculated
by using any i such that 0 < αi < C, and ψ is calculated from the two conditions above.

SMO repeats the following:

• Choose αi, αj greedily such that they violate complementary slackness

• Minimize over αi, αj exactly, keeping all other variables fixed

The second step reduces to minimizing univariate quadratic over an interval, using the equality constraint.

Many further developments on coordinate descent for SVMs have been made; e.g., a recent one is Hsiesh et
al. (2008)

19.8 Coordinate Descent in Statistics and ML

In history, the idea appeared in Fu (1998), then in Daubechies et al. (2004), but it was ignored then. Later
in 2007 it gained popularity.

The advantages of the method is that it is very easy to implement and pretty simple. If carefully implemented,
it can be state-of-the-art. It is also scalable since it does not need to keep full data in memory.

Examples of applications: lasso regression, lasso GLMs (under proximal Newton), SVMs, group lasso, graph-
ical lasso (applied to the dual), additive modeling, matrix completion, regression with nonconvex penalties.

19.9 Pathwise Coordinate Descent for Lasso

Friedman et al. proposed the pathwise coordinate descent method for Lasso problem. The algorithm runs
over two loops.

Outer Loop(pathwise strategy):

• Compute the solution over a sequence λ1 > λ2 > · · · > λr of tuning parameter values

• For tuning parameter value λk, initialize coordinate descent algorithm at the computed solution for
λk+1 (warm start)

19-8 Lecture 19: October 30 Coordinate Descent

Inner loop(active set strategy):

• Perform one coordinate cycle (or small number of cycles), and record active set A of coefficients that
are nonzero

• Cycle over only the coefficients in A until convergence

• Check KKT conditions over all coefficients , if not all satisfied, add offending coefficents to A, go back
one step

Some important points:

• Even when the solution is desired at only one , the pathwise strategy (solving over λ1 > λ2 > ...λr = λ)
is typically much more efficient than directly performing coordinate descent at λ, indeed this is what
many existing packages will do.

• Active set strategy takes advantage of sparsity; e.g., for very large problems, coordinate descent for
lasso is much faster than it is for ridge regression

• With these strategies in place (and a few more clever tricks), coordinate descent can be competitive
with fastest algorithms for l1 penalized minimization problems

• Fast Fortran implement glmnet, which can be linked to R or MATLAB

19.10 Coordinate Gradient Descent

For a smooth function f , the iterations

x
(k)
i = x

(k−1)
I − tki∇if

(
x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)n

)
, i = 1, . . . , n

for k = 1, 2, 3 . . . are called coordinate gradient descent. If f = g + h with g smooth and h =
∑n
i=1 hi, i.e.

separable, the iterations

x
(k)
i = proxhi,tki

(
x
(k−1)
i − tki∇ig

(
x
(k)
1 , . . . , x

(k−1)
i , . . . , x(k−1)n

))
, i = 1, . . . , n

for k = 1, 2, 3 . . . are called coordinate proximal gradient descent. When g is quadratic, these two updates
are the SAME under proper step sizes.

19.11 Convergence analysis

There has been a lot of theory for. coordinate descent. Each combination of the following cases: coordinate
descent/coordinate gradient descent, cyclic rule/permuted cyclic/greedy rule/randomized rule has been an-
alyzed before. It is worth noting that the constants in the convergence rate matters and there are much
recent work on improving those constant term. Last, it is generally believe that coordinate descent should
perform better than first-order methods.

Lecture 19: October 30 Coordinate Descent 19-9

19.12 Screening rules

Screening rules works by pre-computing those variables that are bound to be zero in the optimal solution.
Then discarding these variables makes it easier to solve the problem.

There has been a lot of research on designing screening rules for the lasso problem. Here we introduce the
first and one of the simplest rule:

Theorem 19.1 SAFE rule for the lasso problem: For any i ∈ {1, · · · , p}, if the following is satisfied:

|XT
i y| < λ− ‖Xi‖2‖y‖2

λmax − λ
λmax

where λmax = ‖XT y‖∞, then in the optimal solution β, we have βi = 0.

Proof: Recall the dual of the Lasso problem:

min
u

g(u)

subject to ‖XTu‖∞ ≤ λ

where g(u) = 1
2‖y‖

2
2 − 1

2‖y − u‖
2
2. We first find a feasible point of the dual problem, recall that:

λmax = ‖XT y‖∞

Then if we let u0 = y · λ
λmax

, we have:

‖XTu0‖∞ ≤ λ

Now we have a feasible point u0 of the lasso dual formulation. Then γ = g(u0) is a lower bound on the dual
optimal value. So the dual problem is equivalent to:

min
u

g(u)

subject to ‖XTu‖∞ ≤ λ
g(u) ≥ γ

The KKT condition (stationary condition) for lasso tells us that for the optimal point uopt of dual problem,
if XT

i uopt < λ, then βi must be zero at the optimal solution of lasso.
Then for each i, consider the following problem:

max
u

|XT
i u|

subject to g(u) ≥ γ

We denote the optimal criterion value of the above problem as mi. Notice that this problem is not convex.
But we can solve the following convex problem and compute mi as the maximum of the criterion values over
±Xi.

max
u

XT
i u

subject to g(u) ≥ γ

The dual problem is:

min
µ

− γµ+
1

2µ
‖µy −Xi‖22

subject to µ > 0

19-10 Lecture 19: October 30 Coordinate Descent

We now directly solve the dual:

−γµ+
1

µ
‖µy −Xi‖22 = (‖y‖22 − 2γ)

µ

2
+

1

2µ
‖Xi‖22 −XT

i y

≥ ‖Xi‖2
√
‖y‖22 − 2γ −XT

i y

where the equality is reached when µ =
√
‖Xi‖22
‖y‖22−2γ

.

Taking the maximum over ±Xi: (recall γ = g(u0))

mi = ‖Xi‖2
√
‖y‖22 − 2γ + |XT

i y|

We want mi to be smaller than λ, which guarantees that βi = 0:

mi < λ

⇐⇒ ‖Xi‖2
√
‖y‖22 − 2γ + |XT

i y| < λ

⇐⇒ ‖Xi‖2 · ‖y − y ·
λ

λmax
‖2 + |XT

i y| < λ

⇐⇒ |XT
i y| < λ− ‖Xi‖2‖y‖2

λmax − λ
λmax

References

[T01] P. TSENG, “Convergence of a Block Coordinate Descent Method for Nondifferentiable Mini-
mization”, Journal of Optimization Theory and Applications, 2001, pp. 475–494.

[F98] W. J. FU “Penalized Regressions: The Bridge versus the Lasso”, Journal of Computational
and Graphical Statistics, 1998, 7:3, 397-416.

