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13.1 Review: KKT Conditions

Given a problem

min
x
f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m,

lj(x) = 0, j = 1, . . . , r.

The KKT conditions are:

• Stationarity: 0 ∈ ∂x
(
f(x) +

∑m
i=1 uihi(x) +

∑r
j=1 vj lj(x)

)
• Complementary Slackness: ui · hi(x) = 0 for all i

• Primal Feasibility: hi(x) ≤ 0, lj(x) = 0 for all i, j

• Dual Feasibility: ui ≥ 0 for all i

The conditions are necessary for optimality under strong duality, and always sufficient.

13.2 Uses of Duality

1. Duality gap can be used to check optimality and as a stopping criterion:
For x primal feasible, and u, v dual feasible,

f(x)− f(x∗) ≤ f(x)− g(u, v)

RHS is the duality gap. Zero duality gap implies optimality.

2. Duality can be used to characterize or compute primal solutions from dual solution:
Under strong duality, given dual optimal u∗, v∗, any primal solution x∗ solves

min
x
L(x, u∗, v∗)
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13.2.1 When is dual easier?

Key facts about primal-dual relationship (some described below, some later):

• Dual has complementary number of variables: recall, number of primal constraints.

• Dual involves complementary norms: ‖ · ‖ becomes ‖ · ‖∗

• Dual has ”identical” smoothness: L/m (Lipschitz constant of gradient by strong convexity parameter)
is unchanged between f and its conjugate f∗

• Dual can ”shift” linear transformations between terms. This leads to key idea: dual decomposi-
tion

13.2.2 Solving the primal via the dual

An important consequence of stationarity: under strong duality, given a dual solution u∗, v∗, any primal
solution x∗ solves

min
x

f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j lj(x)

Often, solutions of this unconstrained problem can be expressed explicitly, giving an explicit characteriza-
tion of primal solution from dual solutions.

Further, suppose the solution of this problem is unique; then it must be the primal solution x∗. This can be
very helpful when the dual is easier to solve than the primal.

Example: Consider

min
x

n∑
i=1

fi(xi) subject to aTx = b

where each fi(xi) = 1
2cix

2
i (smooth and strictly convex). Its dual function is

g(v) = min
x

n∑
i=1

f(xi) + v(b− aTx)

= bv +

n∑
i=1

minxi{fi(xi)− aivxi}

= bv −
n∑
i=1

f∗i (aiv),

where each f∗i (y) = 1
2ci
y2, called the conjugate of fi.

Therefore the dual problem is

max
v

bv −
n∑
i=1

f∗i (aiv) ⇐⇒ min
v

n∑
i=1

f∗i (aiv)− bv

This is a convex minimization problem with scalar variable - much easier to solve than primal.
Given v∗, the primal solution x∗ solves

min
x

n∑
i=1

(
fi(xi)− aiv∗xi

)
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Strict convexity of each fi implies that this has a unique solution, namely x∗, which we compute by solving
f ′i(xi) = aiv

∗ for each i. This gives x∗i = aiv
∗/ci.

13.3 Dual Norms

A general norm is defined as the form ‖x‖, for example:

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

represents the lp norm for all p ≥ 1

‖X‖tr =

r∑
i=1

σi(X) represents the trace norm of a matrix, the sum of its singular values

Definition 13.1 The dual norm of x is expressed as:

‖x‖∗ = max
‖x‖≤1

zTx

From this we get the inequality |zTx| ≤ ‖z‖‖x‖∗, which is similar to the generalized Hölder’s inequality. If
we apply the definition to the lp and trace norm:

(‖x‖p)∗ = ‖x‖q, where
1

p
+

1

q
= 1

(‖X‖tr)∗ = ‖X‖op = σ1(X)

Theorem 13.2 The dual of the dual norm, ‖x‖∗∗ = ‖x‖

Proof: We consider the problem:
min
y
‖y‖ subject to y = x

While this looks trivial, the result is actually not quite so. Its optimal value is ‖x‖. Taking the Lagrangian:

L(y, u) = ‖y‖+ uT (x− y) = ‖y‖ − yTu+ xTu

By the definition of the dual norm ‖ · ‖∗:

min
y
{‖y‖ − yTu} =

{
−∞ ‖u‖∗ > 1

0 ‖u‖∗ ≤ 1

Thus, the Lagrangian dual is:
max
u

utx subject to ‖u‖∗ ≤ 1

This defines the dual of the dual norm, and by strong duality f∗ = g∗ =⇒ ‖x‖ = ‖x‖∗∗

13.4 Conjugate Functions

Definition 13.3 For a function f : Rn → R, a conjugate f∗ : Rn → R is defined as:

f∗(y) = max
x

yTx− f(x)
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Figure 13.1: Illustration of the conjugate for a function f(x) (from B&V Page 91)

The conjugate is always convex, even for non-convex f . This is because it is a pointwise maximum of convex
(affine) functions in y. It can also be considered as the maximum difference between a linear function yTx
and the function itself. If f is differentiable, the conjugate is called the Legendre transform.

13.4.1 Properties

• Fenchel’s inequality for any x, y:
f(x) + f∗(y) ≥ xT y

• Taking the conjugate of a conjugate obeys f∗∗ ≤ f

• As a special case, if f is closed (sublevel sets are closed) and convex f∗∗ = f

• If f is closed and convex, then for all x, y, Fenchel’s inequality becomes a equality:

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)

⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then we can split it into a term-by-term conjugation:

f∗(w, z) = f∗1 (w) + f∗2 (z)

13.4.2 Examples

• For a simple quadratic example f(x) = 1
2x

TQx, where Q � 0. Then:

f∗(y) = max
x

yTx− 1

2
xTQx

yTx− 1
2x

TQx is strictly concave in y

=
1

2
yTQ−1y (x∗ = Q−1y)
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• Indicator function: if f(x) = Ic(x), then the conjugate is called the support function:

f∗(y) = I∗c (y) = max
x∈C

yTx

• Norm: if f(x) = ‖x‖, then its conjugate is the indicator of the dual norm ball:

f∗(y) = Iz:‖z‖∗≤1(y)

13.4.3 Example: Lasso Dual

This example shows how we can use conjugate functions to derive the dual problem, and a useful trick for
”shifting” a linear transform from one part of the objective to another.

Given y ∈ Rn, X ∈ Rn×p the lasso problem is

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

It is not obvious at first what the dual problem will look like. The primal function has no constraints, so
it’s not clear how many dual variables we will have. We introduce auxiliary variables (here z) to create
constraints, which will later give dual variables:

min
β,z

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ

Now the Lagrangian is as below, with dual variable u and primal variables z, β:

L(z, β, u) =
1

2
‖y − z‖22 + λ‖β‖1 + u>(z −Xβ)

We minimize the Lagrangian over z, β and use the conjugate of the L1-norm derived previously.

min
β,z

1

2
‖y − z‖22 + λ‖β‖1 + u>(z −Xβ)

= min
z

(
1

2
‖y − z‖22 + u>z

)
+ min

β

(
λ‖β‖1 + (X>u)>β

)
=

1

2
‖y‖22 −

1

2
‖y − u‖22 + min

β
λ

(
‖β‖1 −

(X>u)>

λ
β

)
=

1

2
‖y‖22 −

1

2
‖y − u‖22 − λIv:‖v‖∞≤1(X>u/λ)

The indicator function is equivalent to the constraint ‖X>u‖∞ ≤ λ, so the lasso dual problem is

max
u

1

2
‖y‖22 −

1

2
‖y − u‖22 subject to ‖X>u‖∞ ≤ λ
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Which is equivalent to

min
u

1

2
‖y − u‖22 subject to ‖X>u‖∞ ≤ λ

The dual problem was derived by making the substitution z = Xβ, so the two are equivalent. Slater’s
condition holds, and therefore strong duality holds too. The dual attains the same objective value as the
primal.

The KKT stationary condition for z gives us that at the dual solution, any lasso solution β satisfies z =
Xβ = y − u

Figure 13.2: Visualization of Lasso Dual Problem, where its solution looks like projection of y onto set C, a
polyhedron mapped from a hypercube.

The solution to the dual problem should look like projection of y onto the set C = {u : ‖X>u‖∞ ≤ λ} =
(X>)−1{v : ‖v‖∞ ≤ λ}. This concept is illustrated by Figure 13.2. The set C is a polyhedron which is
mapped from a hypercube. This is the inverse image under linear map X. Every face of the polyhedron
corresponds to an active set of signs that lasso would choose. When we project y onto a face, all yi share
the active set of signs of the lasso solution. Those active sets of signs are locally constant, and we see that
lasso is stable as variable selector.

13.4.4 Relationship between conjugate and dual problems

The Lagrangian dual has a relationship to forming conjugates of functions. Conjugates appear frequently in
the derivation of dual problems:

−f∗(u) = min
x

f(x)− u>x
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Examining a primal problem

min
x

f(x) + g(x)

As before, we make a substitution to introduce a constraint:

= min
x,z

f(x) + g(z) subject to x = z

The Lagrange dual function is:

g(u) = min
x

f(x) + g(z) + u>(z − x)

= −f∗(u)− g∗(u)

So the dual problem is

max
u

−f∗(u)− g∗(−u)

Below are some of examples of the use of conjugates in deriving the dual problem. The indicator maps to a
support function, and the norm (which is a special kind of support function) maps to the indicator:

• Indicator function:
The dual of

min
x

f(x) + IC(x)

is

max
u

−f∗(u)− I∗C(−u)

• Norm:
The dual of

min
x

f(x) + ‖x‖

is

max
u

−f∗(u) subject to ‖u‖∗ ≤ 1

13.4.5 Shifting linear transformation

We have seen in the previous section how a linear transformation can shift from one part of the objective to
another in the dual formulation. For the problem

min
x

f(x) + g(Ax)

Which is equivalent to

min
x,z

f(x) + g(z) subject to Ax = z
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The dual problem is

max
u

−f∗(A>x)− g∗(−u)

This can often be a useful trick. If f is smooth but g is not, it is typically hard to solve the primal problem
with methods such as projected gradient descent, proximal gradient descent, or the subgradient method. We
can get around this with the dual. If f is smooth, f∗ is also smooth. In the dual, though g is nonsmooth,
projected gradient descent or proximal gradient descent are now possible.

13.5 Dual Subtleties

• Sometimes, like in the case of the Lasso Dual, we transform the dual to an equivalent problem but still
call it the dual. With strong duality, we can use the solutions of this modified problem to compute
primal solutions. Note: The transformed dual’s optimal value may not be the optimal value
of the primal.

• When presented with an unconstrained problem, a common trick is to add dummy variables with
an equality constraint (e.g. Dual lasso). This leads to an ambiguity in the process, we can
theoretically get different duals for the same primal problem! However, if the primal is convex,
all the duals must give an equivalent solution, albeit with different solving difficulties.


