
10-725/36-725: Convex Optimization Fall 2015

Lecture 20: November 4
Lecturer: Ryan Tibshirani Scribes: Vineet Jain

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

20.1 Last time: Coordinate descent

Consider the problem

min
x
f(x)

where f(x) = g(x) +
∑n
i=1 hi(xi), with g convex and differentiable and each hi convex.

Coordinate descent: let x(0) ∈ R and repeat for k = 1, 2, . . .

x(k) = argmin
xi

f
(
x
(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
, i = 1, 2, . . . , n

A few points to note:

• This method can be applied to blocks of variables instead of individual variabels.

• For every update x
(k)
i , we use the ‘most recent information’ available for the other variables.

• Relatively simple to implement and can achieve state-of-the-art

20.2 Reminder: Conjugate Functions

Conjugate function of f : R→ R,

f∗(y) = max
x

yTx− f(x)

and is always convex.

• Useful in formulation in dual programs, since

−f∗(y) = min
x
f(x)− yTx

• If f is closed and convex, then f∗∗ = f and,

x ∈ ∂f∗(y)⇐⇒ y ∈ ∂f(x)⇐⇒ x ∈ argmin
z

f(z)− yT z

Since x ∈ argminz f(z)− yT z ⇐⇒ 0 ∈ ∂f(x)− y ⇐⇒ y ∈ ∂f(x)⇐⇒ x ∈ ∂f∗(y)
For proving the other direction, use f∗∗ = f .

• If f is strictly convex, then f∗ is differentiable and ∇f∗(y) = argminz f(z)− yT z

20-1



20-2 Lecture 20: November 4

20.3 Dual first-order methods

Using the properties of conjugate functions, we can optimize the dual (conjugate) problem without calculating
it’s gradient directly. This is especially useful if we cannot obtain the dual or the conjugate in closed form.
Consider a convex optimization problem with affine equality constraint,

min
x
f(x) subject to Ax = b

Deriving its dual formulation, the Lagrangian is given by,

L(x, u) = f(x) + uT (Ax− b)

and the dual function is,

g(u) = min
x
L(x, u) = min

x
f(x) + uT (Ax− b)

= min
x
f(x)− (−ATu)Tx− uT b

= −f∗(−ATu)− uT b

The dual problem is therefore,

max
u
−f∗(−ATu)− uT b

The subgradient is given by,

∂g(u) = A∂f∗(−ATu)− b
= Ax− b where x ∈ argmin

z
f(z) + uTAz

where we have used the property of conjugate functions (for closed and convex f).

20.3.1 Dual subgradient method

The above formulation of the problem can be used to develop the subgradient method, which maximizes the
dual objective for the problem given above.

1. Start with an initial guess u(0)

2. Repeat for k = 1, 2, 3, . . .

x(k) ∈ argmin
z

f(z) + (u(k−1))TAz (Note that this is KKT stationarity condition)

u(k) = u(k−1) + tk(Ax(k) − b) (Note that (Ax(k) − b) is subgradient of g)

The step sizes tk can be chosen in standard ways.
Note that this method maximizes the dual objective without the need to obtain an expression for the dual
function or the conjugate of f .



Lecture 20: November 4 20-3

20.3.2 Dual gradient ascent

If f is strictly convex, then f∗ is differentiable and the subgradient of f∗ at x is now a singleton set, which
is equal to the gradient ∇f∗(x), so the above method becomes dual gradient ascent,

1. Start with an initial guess u(0)

2. Repeat for k = 1, 2, 3, . . .

x(k) = argmin
z

f(z) + (u(k−1))TAz (Note that this is KKT stationarity condition)

u(k) = u(k−1) + tk(Ax(k) − b) (Note that (Ax(k) − b) is gradient of g)

The step sizes tk can be chosen in standard ways.
Proximal gradient descent and acceleration can also be applied to this framework.

20.3.3 Convergence analysis

Theorem 20.1 Assume f is a closed and convex function. Then f is strongly convex with parameter m
⇐⇒∇f∗ is Lipschitz with parameter 1

m .

Proof:
Proof of ”=⇒”:
If g is strongly convex with parameter m and x is the minimizer,

g(y) ≥ g(x) +
m

2
‖y − x‖22, for all y

Define gu(x) = f(x)− uTx and since strong convexity implies strict convexity, f∗ is differentiable and using
the property of conjugate functions,

argmin
z

gu(z) = xu = ∇f∗(u)

argmin
z

gv(z) = xv = ∇f∗(v)

Using the fact that xu and xv are minimizers of gu and gv respectively,

gu(xv) ≥ gu(xu) +
m

2
‖xv − xu‖22 ⇒ f(xv)− uTxv ≥ f(xu)− uTxu +

m

2
‖xv − xu‖22

gv(xu) ≥ gv(xv) +
m

2
‖xu − xv‖22 ⇒ f(xu)− vTxu ≥ f(xv)− vTxv +

m

2
‖xu − xv‖22

Adding these inequalities and applying Cauchy-Schwartz inequality,

f(xv) + f(xu)− uTxv − vTxu ≥ f(xu) + f(xv)− uTxu − vTxv +m‖xu − xv‖22
(u− v)T (xu − xv) ≥ m‖xu − xv‖22 ⇒ ‖u− v‖2‖xu − xv‖2 ≥ m‖xu − xv‖22

‖∇f∗(u)−∇f∗(v)‖22 ≤
1

m
‖u− v‖2



20-4 Lecture 20: November 4

Proof of ”⇐=”:
Assume f∗ has Lipschitz property, with constant L = 1

m . Define gx(z), which is also Lipschitz with constant
L,

gx(z) = f∗(z)−∇f∗(x)T z

∇gx(z) = ∇f∗(z)−∇f∗(x)

∇2gx(z) = ∇2f∗(z) � LI

Using the Taylor expansion of gx(z), we get the following inequality,

gx(z) ≤ gx(y) +∇gx(y)T (z − y) +
L

2
‖z − y‖22

Minimizing both sides over z, where we use the minimizer for a quadratic function, z∗ = y −∇gx(y)/L,

gx(x) ≤ gx(y)−∇gx(y)T
∇gx(y)

L
+
L

2
‖ − ∇gx(y)

L
‖22

f∗(x)−∇f∗(x)Tx ≤ f∗(y)−∇f∗(x)T y − 1

2L
‖∇f∗(y)−∇f∗(x)‖22

1

2L
‖∇f∗(y)−∇f∗(x)‖22 ≤ f∗(x)− f∗(y) +∇f∗(x)T (x− y)

Similarly, we have

1

2L
‖∇f∗(y)−∇f∗(x)‖22 ≤ f∗(y)− f∗(x) +∇f∗(y)T (y − x)

Adding these inequalities, we get,

1

L
‖∇f∗(y)−∇f∗(x)‖22 ≤ (∇f∗(y)−∇f∗(x))T (y − x)

Let u = ∇f∗(x) and v = ∇f∗(y), then we have x = ∇f(u) and y = ∇f(v), since f∗∗ = f . Then,

(∇f(u)−∇f(v))T (u− v) ≥ 1

L
‖u− v‖22

which implies that f is strongly convex with parameter 1/L = m.

20.3.4 Convergence Guarantees

Using the above theorem and the results from gradient descent convergence analysis:

• If f is strongly convex with parameter m, then dual gradient ascent with constant step sizes tk = m
converges at sublinear rate O(1/ε). Note that in order to get a sublinear rate, we require strong
convexity of f , which is a stronger condition that primal gradient descent (which required∇f Lipschitz).

• If f is strongly convex with parameter m and ∇f is Lipschitz with parameter L, then dual gradient
ascent with step sizes tk = 2/(1/m+ 1/L) converges at linear rate O(log(1/ε)).



Lecture 20: November 4 20-5

20.4 Dual Decomposition

Consider the problem

min
x

B∑
i=1

fi(xi) subject to Ax = b

where x = (x1, . . . , xB) ∈ Rn is divided into B blocks of variables where each xi ∈ Rni . Here, f is
decomposable into B blocks, but the equality constraint does not decompose in a similar manner in the
primal form of the problem.
The minimization problem in calculation of the sub-gradient allows us to decompose it for each individual
block xi. We can partition A accordingly, A = [A1, . . . , AB ], where Ai ∈ Rm×ni ,

x+ ∈ argmin
z

f(z) + uTAz = argmin
z

B∑
i=1

(fi(zi) + uT (Aizi))

⇐⇒ x+i ∈ argmin
zi

fi(zi) + uT (Aizi), i = 1, 2, . . . , B

Using the above, we have the dual decomposition algorithm: Repeat for k = 1, 2, . . .

x
(k)
i ∈ argmin

zi

fi(zi) + (u(k−1))TAizi, i = 1, 2, . . . , B

u(k) = u(k−1) + tk

(
B∑
i=1

Aix
(k)
i − b

)

The advantage of this decomposition is that it allows parallelized updates of each block xi. It is helpful to
think of it as a two-step process:

• Broadcast: send u to each of the B processors, each optimizes in parallel to find xi.

• Gather: collect Aixi from each processor and update the global dual variable u.

20.4.1 Inequality constraints

Consider the problem

min
x

B∑
i=1

fi(xi) subject to

B∑
i=1

Aixi ≤ b

This again can be decomposed into minimzation over each of the individual xi in the subgradient calculation
step. The difference is that we now project the update onto Rn+, so it is a projected subgradient method:
Repeat for k = 1, 2, . . .

x
(k)
i ∈ argmin

zi

fi(zi) + (u(k−1))TAizi, i = 1, 2, . . . , B

u(k) =

(
u(k−1) + tk

(
B∑
i=1

Aix
(k)
i − b

))
+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui}, i = 1, . . . ,m.



20-6 Lecture 20: November 4

20.5 Augmented Lagrangian Method

One disadvantage of dual ascent is that it requires strong convexity of the objective function to ensure
convergence. The augmented Lagrangian method, also known as the method of multipliers, gains better
convergence properties by transforming the primal problem

min
x
f(x) +

ρ

2
‖Ax− b‖22 subject to Ax = b

where ρ > 0 is a parameter. This is clearly the same problem as the original, and when A has full column
rank, the objective function is strongly convex. This ensures convergence of the dual ascent method,

x(k) = argmin
z

f(z) + (u(k−1))TAz +
ρ

2
‖Az − b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)

Note that we have the step size as tk = ρ. This is because,

x(k) = argmin
z

f(z) + (u(k−1))TAz +
ρ

2
‖Az − b‖22

⇐⇒ 0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)
= ∂f(x(k)) +ATu(k)

So choosing this value of tk gives us the stationarity condition in the original primal problem, under mild
conditions Ax(k)−b→ 0 as k →∞ (primal iterates approach feasibility), so the KKT conditions are satisfied
in the limit. Hence, x(k), u(k) converge to the solutions x∗, u∗.

While we see much better convergence properties with the augmented Lagrangian method, we have lost
the property of decomposability.

20.6 Alternating Direction Method of Multipliers (ADMM)

Alternating direction method of multipliers strives to get the best of both words: retain better convergence
properties of the augmented Lagrangian method while maintaining decomposability. Consider problem,

min
x,z

f(x) + g(z) subject to Ax+Bz = c

Even if the original problem is not in this form, we can often manipulate them to fit this form by introducing
auxiliary variables. We can then augment the objective function,

min
x,z

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22 subject to Ax+Bz = c

where ρ > 0 is some parameter. With this formulation, we can write the augmented Lagrangian

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

The augmented Lagrangian method would have jointly minimized the above function over x, z,(
x(k), z(k)

)
= argmin

x,z
Lρ(x, z, u

(k−1))



Lecture 20: November 4 20-7

ADMM splits this minimization into two steps, first minimizing over x and then over z (or vice versa), using
the update value of the previous minimizer in the second step. Repeat for k = 1, 2, . . .,

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)

Note that the update step for u no longer uses the gradient, since the result of separately minimizing x and
z is not necessarily the same as jointly minimizing over both variables.

20.6.1 Convergence Guarantees

Under modest assumptions - f, g are closed and convex and A,B are not required to be full rank, ADMM
iterates satisfy, for any ρ > 0,

• Residual convergence: r(k) = Ax(k)Bz(k)c→ 0 as k →∞, i.e., primal iterates approach feasibility.

• Objective convergence: f(x(k)) + g(z(k)) → f? + g?, where f? + g? is the optimal objective value
for the primal.

• Dual convergence: u(k) → u?, where u? is a dual solution.

Note that ADMM does not guarantee that the primal iterates converge to the primal solution, in general.

ADMM roughly behaves like a first-order method, but it much more flexible and allows problems to be
solved in parallel, even when it is not obvious from the problem structure. Theory on convergence rates are
still being worked out: see Hong and Luo (2012), Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et
al. (2015).

20.6.2 Scaled form ADMM

Typically, ADMM is used in scaled form for convenience. Let w = u/ρ. Then the augmented Lagrangian is,

Lρ(x, z, w) = f(x) + g(z) + ρwT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22

= f(x) + g(z) +
(ρ

2

)
2wT (Ax+Bz − c) +

ρ

2
‖Ax+Bz − c‖22 +

ρ

2
‖w‖22 −

ρ

2
‖w‖22

= f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ w‖22 −

ρ

2
‖w‖22

The corresponding ADMM updates are,

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that the kthiteratew(k) is a running sum of residuals

w(k) = w(0) +

k∑
i=1

(
Ax(i) +Bz(i)c

)



20-8 Lecture 20: November 4

20.6.3 Example: alternating projections

Consider the problem of finding a point in the intersection of two convex sets C,D ⊆ Rn, which we write as

min
x
IC(x) + ID(x)

As seen in a previous lecture, this problem can be reformulated as the maximum distance to each of the two
sets, and apply the subgradient method with a chosen step-size. Alternatively, to get this into ADMM form,
we can introduce an auxiliary variable z so the problem now becomes

min
x,z

IC(x) + ID(z) subject to x− z = 0

Each ADMM cycle involves two projections

x(k) = argmin
x

PC(z(k−1) − w(k−1))

z(k) = argmin
z

PD(x(k) + w(k−1))

w(k) = w(k−1) + x(k) − z(k)

Comparing the above to the classic von Neumann alternating projections algorithm

x(k) = argmin
x

PC(z(k−1))

z(k) = argmin
z

PD(x(k))

The difference in ADMM is that we now have a dual variable, w, which is often called the “offset” variable
and is equal to the sum of the residuals. In this setting, the ADMM algorithm converges much quicker than
standard alternating projections.

When one of the sets, say, C is a linear subspace, then due to linearity, w does not matter for the first
projection. Initialized at z(0) = y, ADMM then is equivalent to Dykstra’s algorithm (which has better con-
vergence properties than the von Neumann alternating projections algorithm) for finding the closest point
in the intersection C ∩D to y.

References

[Boyd 10] S. Boyd and N. Parikh and E. Chu and B. Peleato and J. Eckstein, (2010), “Distributed
optimization and statistical learning via the alternating direction method of multipliers”

[Deng 12] W. Deng and W. Yin, (2012), “On the global and linear convergence of the generalized
alternating direction method of multipliers”

[Hong 12] M. Hong and Z. Luo, (2012), “On the linear convergence of the alternating direction method
of multipliers”

[Iutz 14] F. Iutzeler and P. Bianchi and Ph. Ciblat and W. Hachem, (2014), “Linear convergence
rate for distributed optimization with the alternating direction method of multipliers”

[Nish 15] R. Nishihara and L. Lessard and B. Recht and A. Packard and M. Jordan, (2015), “A
general analysis of the convergence of ADMM”

[LN] L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring 2011-2012


