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The topic for this scribed noted is Duality in General Programs. We will introduce Lagrange dual function
which can be applied to arbitrary optimization problems.

11.1 Review: Duality in Linear Programs

Given c ∈ Rn, A ∈ Rm,n, b ∈ Rm, G ∈ Rr,n, h ∈ Rr:

11.1.1 Explanation 1

The dual problem of a linear problem is generated by introducing dual variables to each constraints. By
multiplying the dual variable with corresponding constraint and then adding them together (equalities and
inequalities), we can rearrange the results to be equal to the primal problem and then get the bound.

For any u and v ≤ 0, and x primal feasible.

uT

=0︷ ︸︸ ︷
(Ax− b) +vT

≤0︷ ︸︸ ︷
(Gx− h) ≤ 0

⇐⇒(−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu − GT v, we can get a bound on primal optimal value. Note that the primal problem is a
minimization problem and its tightest bound is obtained by maximizing the dual problem.

11.1.2 Explanation 2

Another explanation is using Lagrange dual function which is completely general and applied to arbitrary
optimization problems (including non-convex problems).
For any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT

=0︷ ︸︸ ︷
(Ax− b) +vT

≤0︷ ︸︸ ︷
(Gx− h) := L(x, u, v)
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So if C denotes primal feasible set, f? primal optimal value, then for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) := g(u, v)

Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise

Note that L(x, u, v) = (c + ATu + GT v)Tx − bTu − hT v is linear w.r.t. x. When c 6= −ATu − GT v, there
exists x such that L approaches negative infinity.
In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0

11.2 Lagrangian

Consider general minimization problem (no need to be convex)

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, ...,m

lj(x) = 0, j = 1, ..., r

The Lagrangian is defined as

L(x, u, v) = f(x) +

m∑
i=1

ui

≤0︷ ︸︸ ︷
hi(x) +

r∑
j=1

vj

=0︷︸︸︷
lj(x)

where u ∈ Rm ≥ 0, v ∈ Rr. Note that if u ≤ 0, L(x, u, v) −→ −∞.
An important property is that for any u ≥ 0 and v, f(x) ≥ L(x, u, v) at each feasible x.
The relationship of f and L(x, u, v) is not determined outside the feasible set.

Figure 11.1: A one dimension optimization problem. Solid line is f . Dashed line is h. Each dotted line
shows L(x, u, v) for different choice of u ≥ 0.
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11.2.1 Lagrange dual function

Let C denote primal feasible set, f? denote primal optimal value. Minimizing L(x, u, v) over all x gives a
lower bound:

f? ≥ min
x∈C

L(x, u, v) ≥ min
x
L(x, u, v) := g(u, v)

We call g(u, v) the Lagrange dual function, and it gives a lower bound on f? for any u ≥ 0 and v, called
dual feasible u and v.

For f? ≥ minx∈C L(x, u, v), we can get strictly inequality if nonconvex problems.
For minx∈C L(x, u, v) ≥ minx L(x, u, v), when u = 0, g(u, v) gives a tight lower bound. When u 6= 0, in
general, duality will not be tight.

Figure 11.2: Dashed horizontal line is f?. Dual variable is λ

11.2.2 Example: Quadratic Program

Consider quadratic program where Q � 0:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

The Lagrangian in this case is:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

To get the Lagrange dual function of L, we need to take the gradient ∇xL and set it to 0. The minimizer
is x? = −Q−1(c − u + AT v). By taking the minimizer back to the Langrangian, we get the Lagrange dual
function:

g(x, v) = min
x
L(x, u, v) = −1

2
(c− u+AT v)TQ−1(c− u+AT v)− bTu

For any u ≤ 0 and any v, this lower bounds primal optimal value f?.

For the same problem but with Q � 0

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0



11-4 Lecture 11: October 2

Figure 11.3: f(x) here is quadratic with 2 variables, subject to x ≥ 0. Dual function g(u) is also quadratic
in 2 variables, subject to u ≥ 0. Dual function g(u) provides a bound on f? for every u ≥ 0. The largest
value of g(u) is exactly f? if f? obtained interior.

The Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Follow the same procedure, we have Qx = −(c− u+AT v)
If (c−u+AT v) ∈ col(Q) which is equavalent to (c−u+AT v) ⊥ null(Q), we can use the generalized inverse
Q+ of Q to get the minimizer.
Otherwise, there is no such x qualified and so there is no unique minimizer x?. Note that L(x, u, v) is
quadratic in x, hence the minimum should be L(x, u, v) = −∞.

To sum up, Lagrange dual function:

g(u, v) =

{
− 1

2 (c− u+AT v)TQ+(c− u+AT v)− bTu if c− u+AT v ⊥ nullQ

−∞ otherwise

11.2.3 Lagrange dual problem

Given a primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

lj(x) = 0, j = 1, . . . , r,

we have f∗ ≥ g(u, v) for all u ≥ 0 and v. Therefore, we can get a best lower bound for f∗—maximize g(u, v)
over feasible u, v, yielding the Lagrange dual problem:

max
u,v

g(u, v)

subject to u ≥ 0.
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A key property of the primal and dual problems is call “weak duality”:

f∗ ≥ g∗,

where f∗ and g∗ are the optimal value for the primal and dual problems respectively. Note that this property
always holds for any primal and dual problems, even if the primal problem is nonconvex.

A second key property is that the dual problem is always a convex optimization problem (a concave maxi-
mization problem as written), even if the primal problem is nonconvex. This is because by definition

g(u, v) = min
x

{
f(x) +

m∑
i=1

uihi(x) +

r∑
j=1

vj lj(x)

}

= − max
x

{
−f(x)−

m∑
i=1

uihi(x)−
r∑
j=1

vj lj(x)

}
︸ ︷︷ ︸

pointwise maximization of convex (affine) functions in (u,v)

,

which is a concave function. Furthermore, the constraint u ≥ 0 is convex, so the dual problem is a concave
maximization problem.

11.2.4 Example: non-convex quartic minimization

Consider a problem

min
x

x4 − 50x2 + 100x

subject to x ≥ −4.5,

where the objective f(x) = x4 − 50x2 + 100x is not convex (Figure 11.4a).

(a) Primal objective function. (b) Dual objective function.

Figure 11.4: Primal and dual objective functions of the quartic minimization problem.
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The dual function g(u) can be derived explicitly using the closed-form equation for roots of a cubic equation,
and it is

g(u) = min
i=1,2,3

{
F 4
i (u)− 50F 2

i (u) + 100Fi(u)
}
,

where

Fi(u) =
−ai

12 · 21/3

(
432(100− u)−

(
4322(100− u)

2 − 4 · 12003
)1/2)1/3

− 100 · 21/3 1(
432(100− u)−

(
4322(100− u)

2 − 4 · 12003
)1/2)1/3

, i = 1, 2, 3

a1 = 1, a2 =
(
−1 + i

√
3
)
/2, a3 =

(
−1− i

√
3
)
/2.

It is very hard to tell if g(u) is concave without the context of duality. However, here we know g(u) is the
dual function of the primal problem, so we know that g(u) must be concave (Figure 11.4b).

11.3 Strong Duality

Recall that by weak duality, we always have the condition that f∗ ≥ g∗. However, in some problems we will
have f∗ = g∗, which is what we call strong duality

Slater’s condition: if the primal is a convex, where f and hi all convex for i ∈ [1,m] and `j affine j ∈ [1, r],
then there exists at least one strictly feasible x ∈ Rn, then strong duality holds. In other words, the condition
is that hi(x) < 0, `j(x) = 0 for all i ∈ [1,m], j ∈ [1, r].

In fact, we actually observe that the only strict inequalities are needed for the non-affine hi.

11.3.1 Example: support vector machine dual

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, ..., xn. Recall the support vector machine problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑
i=1

ξi

subject to ξi ≥ 0, i = 1, ..., n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, ..., n

By introducing dual variables v, w ≥ 0, we form the Lagrangian:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑
i=1

ξi −
n∑
i=1

viξi +

n∑
i=1

wi(1− ξi − yi(xTi β + β0))

Minimizing over β, β0, ξ gives Lagrangian:

g(u, v) =

{
− 1

2w
T X̃X̃Tw + 1Tw if C1− v, wT y = 0

−∞ otherwise
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for X̃ = diag(y)X. Thus SVM, eliminating slack variable v:

max
w
− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

Check: Slater’s condition is satisfied, and we have strong duality. Further, from study of SVMs, might recall
that at optimality

β = X̃Tw

This is not a coincidence, as we will see via KKT conditions.

11.4 Duality Gap

Given primal x and dual feasible u, v, the quantity

f(x)− g(u, v)

is called the duality gap between x and u, v. Note that

f(x)− f∗ ≤ f(x)− g(u, v)

so if the duality gap is zero, then x is primal optimal and u, v are dual optimal.

From an algorithmic viewpoint, it provides a stopping criterion. If f(x)−g(u, v) ≤ ε, then we are guaranteed
that f(x)− f∗ ≤ ε.


