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22.1 Recap: ADMM

For problem

min f(z) + g(z) subject to Az + Bz =c¢

s

we form the augmented Lagrangian (scaled form):

P P
Ly(z,z,w) = f(z) + 9(2) + S| Az + Bz —c + wll3 - §|\w||§

The alternating direction method of multipliers or ADMM has the following update steps:

2™ = argminL, (z, 2* =Y w*-Y)

2F) = argminL,(z, 2F, w(k_l))

w® = wk=D ¢ Ax®) 1 BB ¢

ADMM converges like a first-order method and is a very flexible framework. It can be used in simple
problems (e.g. LASSO) or more difficult problems (e.g. SDPs).

22.2 Projected Gradient Descent

Consider a constrained problem which constrain the solution in the convex set C.

min f(x) subject to x € C
xT
where f is convex and smooth. Recall that projected gradient descent chooses an initial (®) and update
by

2® = Po (a1 — 4,V f(zF 1))
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for k=1,2,3,.... Here P¢ is the projection operator onto the set C.

One special case of proximal gradient, motivated by local quadratic expansion of f is that,

. - — 1 -
#® = Po (argminV (@ 0)7(y - o 470) + 2 fly - 25V)3)
Yy

One motivation for exploring Frank-Wolfe is that in projections are not always easy. For example, if the
constraint set is a polyhedron, C = {x : Az < b}, the projection is generally very hard.

22.3 Frank-Wolfe Method

The Frank-Wolfe method is also called conditional gradient method, that uses a local linear expansion of
f, instead of using a quadratic expansion as in projected GD methods.

s ¢ argminV f (zF~1) s

seC
2™ = (1 — 4z 4, sD

We take a convex combination of the new point s*~1) and z*~1), so we can remain in the convex set C'
without going beyond the set boundary. Therefore there is no projections involved and the update is
solved directly on C, as shown in Figure 22.1.

The default step size is

2
T 1
for k =1,2,3,.... Note that for any 0 < 4, < 1, we have z(*) € C by convexity. The update can be written

as:

2 = =1 |y (k=1 (=)

where (sk=1 — x(kfl)) is the direction we are going to, and v is the step size. Since ~j is decreasing, we are
moving less and less in the direction of the linearization minimizer as the algorithm proceeds.

22.4 Norm Constraints

Let’s see an example, when the C' = {x : ||z|| <t} for a norm || - ||. By the definition of the problem we have

s € argminV f(z*~)Ts
llsll<t

Since

min Vf(z)'s = — max -V f(z)s
[IslI<t /(@) Isll<t /(@)

= —t- max =V f(z) 2
[IzlI<1 /(@)

—t- max Vf(z)Tz
Izl <1 /(@)
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(From Jaggi 2011)

Figure 22.1: Illustration from Jaggi (2011). f(x) is a differentiable convex function, and D is the constraint
set. The brown plane is the linear approximation of the function at z, and s is the point that minimizes the
approximation constrained by D. The upate is a convex combination of point z and s.

Therefore

argminV f(z)7s = —t argmaxV f(z)'s
llslI<t sll<1

So the dual norm can be written as

2]« = max 2Tz

llzll<1

Therefore
s € argminV f(z*~)Ts
llsli<t

=—t- <argmafo(x(k*1))Ts>
lIsli<1

= —t- 9|V f(a* V)L

where || ||« denotes the corresponding dual norm. That is, if we know how to compute the subgradients of
the dual norm, then we can easily perform Frank-Wolfe steps. With the closed form update, Frank-Wolfe
is simpler or cheaper then taking projection onto C' = {x : ||z| < t}.

The following sections are related to some examples of norm based constraints to see how to perform Frank-
Wolfe in these special cases.

22.5 Example: Trace Norm Regularization

Consider the trace-regularized problem
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n}}nf(X) subject to || X ||t < ¢

Applying Frank-Wolfes algorithm, noticing that the dual of trace norm is operator norm, so we will get

S*D e —to|vs (x*)

op

Notice that the operator norm is the maximum singular value, so when we denote u and v being the leading
left and right singular vectors of V f (X(k_l)), we can get

SE=1) — _¢ . ypT

This make Frank-Wolfe updates much cheaper than the projection onto the trace norm ball, which need at
least a truncated SVD: keep finding singular values until finding a value smaller than t, the radius of the
norm ball, thus much more steps than only getting leading singular vectors.

22.6 Note: Constrained and Lagrange forms

Notice that the constrained form

min f(z) subject to x| <t
x

is equal to the Lagrange form

min f(z) + ]

as long as we let the tuning parameters ¢ and X vary over [0,00). And there is also no strong preference over
either constrained form or Lagrangian form, and we will just solve whichever form is easier to solve *, and
choose best via something like a cross validation (CV).

In the previous chapters, we just show the superiority of Frank-Wolfe over constrained form on some specific
problems. So that’s not enough, and we should also show that Frank-Wolfe is also superior over corresponding
Laplacian form of the problems.

e /1 norm: Frank-Wolfe update scans for maximum of gradient; proximal operator soft-thresholds the
gradient step; both use O(n) ops.

e /, norm: Frank-Wolfe update computes raises each entry of gradient to power and sums, in O(n) ops;
proximal operator not generally directly computable.

e Trace norm: Frank-Wolfe update computes top left and right singular vectors of gradient; proximal
operator soft-thresholds the gradient step, requiring a singular value decomposition.
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Q.ED.

* However, the two forms are not exactly equivalent. Solving for the best ¢ or A actually results in different
estimators and don’t have the same operator characteristics. Equivalency between ¢ and ) is instead data
dependent.

Various other constraints yield efficient Frank-Wolfe updates, e.g., special polyhedra or cone constraints,
sum-of-norms (group-based) regularization, atomic norms, etc.

22.7 An example where Frank-Wolfe isn’t superior
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Figure 22.2: Comparison of conditional v.s. projected gradient over constrained lasso problem

Comparing projected and conditional gradient for the constrained lasso problem, with n=100, p=>500: Frank-
Wolfe converges slower than projected gradient *. Note that both projected gradient and Frank-Wolfe are
both O(n), so there is no reason to choose FW in this case.

Also, this graph told us that Frank-Wolfe is not a descent estimator as the objective is not monotonically
decreasing over each k.

* Frank-Wolfe in this problem uses standard step sizes, and a different step size method such as line search
would probably help in terms of convergence.

22.8 Duality Gap

Frank-Wolfe iterations admit a very natural duality gap:

g ($<k>) _ vy (x(m)T (xav) _ s(k))
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Claim: it holds that

f (xoc)) <y (x(k))

Proof: by the first-order condition for convexity

f(s) = 1 (a9) + 97 (w)T (s —2®)

Minimizing both sides over all s € C' yields

=1 (+9) +min v s (N))T (s =)
—f (z(k)> +Vf (x(k))T (s(’“) B z(k:))

Which can then be re-written as

Q.E.D.
Why do we call it a ”duality gap”?

If we rewrite original problem as

rrz}in f(x)+Ic(x)

and the dual problem will be

max — f*(u) — Io(—u)

where I}, is the support function of C. Duality gap at z;u is

F@) + f*(u) + IE(—u) > aTu + I (~u)
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Evaluating this at

z=a® u=VFf (x(k))

and we get

\%i (x(k))T z®) 4 rsneag—Vf (x(k)>T s=Vf (x(k))T (x(k) - s(k))

which is exactly our gap.

22.9 Convergence Analysis

Following Jaggi [2], define the curvature constant of f over C:

M=  max 2 (f(y) - f(z) - Vi) (y - )

~€[0,1],2,5,y€C 72
y=(1—v)z+vs

Note that M = 0 for linear f, and f(y) — f(z) — Vf(z)T (y — x) is called the Bregman divergence, defined
by f

Theorem 22.1 The Frank- Wolfe method using standard step sizes v = k=1,2,3..., satisfies

)i

2
k+1°

Thus number of iterations needed for f (z(®)) — f* < € is O(1/e). This matches the sublinear rate for
projected gradient descent fo Lipschitz V f with constant L, recall,

L
fy) = f(@) = V@) (y —2) < Slly — )3
Maximizing over all y = (1 — )z + s, and multiplying by 2/72,

2 L

M < max =5

v€[0,1],2,5,yEC 7y 2
y=(1-v)eC

y=1—-v)z+7s

= L||z — s||3 = L - diam®
max Ll — sl2 iam®(C)

ly = 3

Where diam?(C) is the squared diameter of the set C. So, if f has a gradient that is Lipschitz, and C is
compact, then it immediately has a curvature that is finite and that is at most L -diam?(C) Hence assuming
a bounded curvature is basically no stronger than what we assumed for projected gradient.
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22.10 Basic Ingeuality

The key inequality used to prove the Frank-Wolfe convergence rate:

f (:ﬂ““)) <f (zv(’“_l)) — kg (x(’“‘l)) + %’%M

Here g(x) = max,ec Vf(z)T (z — s) is duality gap defined earlier

Proof: write 2t = 2 z = 21 s = s(*=1 ~ = 4, Then
f (™) = fla+r(s —x))
.

< @) + V@) (s =) + M

= f(2) = 9(@) + M

Second line used definition of M, and third line the definition of g. The proof of the convergence result is
now straightforward. Denote by h(z) = f(x) — f* the suboptimality gap at x. Basic inequality:

h (x(k)) <h (x(k—1)> — kg (x(k—1)> n %’%M
<h (m(k—1)> — (x(k—l)) . %’%M
= (1= )b (a0) %’%M

where in the second line we used g (x(’“’l)) >h (a:(k’l)). To get the desired result we use induction:
2\ 2M 2 \’M _ 2M
h ( (’“>) <(1- il
)T kT ) 2 S e

22.11 Affine Invariance

Frank-Wolfe updates are affine invariant: for nonsingular matrix A, define x = Az’, F(2') = f(Ax'), consider
Frank-WOlfe on F:

s’ = argminVF (/)" 2
zEA-1IC

(@) = (1 =)'+

Multiplying by A produces same Frank-Wolfe update as that from f. Convergence analysis is also affine
invariant: curvature constant
M= max = (F () — F(z') - VF @) (y — x’))
v€l[0,1],z,s,y€C ’y2
Y/ =(1—v)a+~s’

matches that of f, because VF (z/)" (v —2/) = Vf(2)T(y — x)
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22.12 Inexact Updates

Jaggi [2] also analzes inexact Frank-Wolfe updates suppose we choose s=1 50 that

v/ (x(k—l)) glk— 1)<m1an( (k— 1))T5+@-6

seC

where § > 0 is an inaccuracy parameter. Then we attain the same rate.

Theorem 22.2 Theorem: Frank-Wolfe using step sizes vy, = 2/(k+ 1),k = 1,2,3,...

parameter 6 > 0 , satisfies

f (x(k)) < %(1 +0)
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and inaccuracy

Note: the optimization error at step k is M., /2 - 6. Since vk — 0, we require the errors to vanish.

22.13 Two variants

There are two important variants of Frank-Wolfe method.

1. Line search. instead of using standard step sizes, use

Y, = argmin f (x(kfl) + (S(kfl) _ x(k—l)))
v€[0,1]

at each k =1,2,3,... Or, we could use backtracking

2. Fully corrective: directly update according to

) = argminf(y) subject to y € conv {x(o), sO s(k_l)}

Y

Both variants lead to the same O(1/¢) iteration complexity Another popular variant: away steps, which

get linear convergence under strong convexity

22.14 Path Following

Given the norm constrained problem

min f(z) subject to |z| <t
x

Frank-Wolfe can be used for path following, i.e., we can produce an approximate solution path Z(t) that is

e-suboptimal for every ¢ > 0. Let tg = 0 and x (O) =0, fix m > 0, repeat for k =1,2,3,...:

1. Calculate

(I1—-1/m)e

b= IS G )L

and set &(t) = & (tg_1) for all t € (tp_1,tx)
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2. Compute & (t;) by running Frank-Wolfe at t = tj, terminating when the duality gap is < e¢/m

(This is a simplification of the strategy from Giesen et al. [1])
Claim: this produces (piecewise-constant) path with

f@@)—f(x @) <e forallt>0
Proof: rewrite the Frank-Wolfe duality gap as

ge(w) = max Vf(2)"(z — s) = V() z +t|Vf(2)]

lIsll<t

This is a linear function of t. Hence if g;(x) < €/m, , then we can increase ¢ until t+ = t+(1—1/m)e/||V f(x)||«,
because

g+ (@) = V(@) o + | V()] +e—e/m<e

i.e., the duality gap remains < € for the same x, between ¢t and t*
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