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11.1 Recap from Last Time

Given the following convex minimization problem:

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

`j(x) = 0, j = 1, . . . , r

(11.1)

The Lagrangian is defined as L(x, u, v) = f(x) +
∑m
u=1 uihi(x) +

∑r
j=1 vj`j(x). The Lagrange dual function

is defined as g(u, v) = minx L(x, u, v). The dual problem is

max
u,v

g(u, v)

subject to u ≥ 0

There are a few important things to note.

(1) The Lagrange dual function g(u, v) is always concave regardless of whether the primal problem is convex
or not.

(2) Weak duality : f∗ ≥ g∗ holds for all problems, where f∗ and g∗ are primal and dual optimal values,
respectively.

(3) Slaters’s condition, which says the primal has at least one strictly feasible point, is a sufficient condition
for strong duality to hold. If ∃x such that hi(x) < 0, i = 1, . . . ,m and `j(x) = 0, j = 1, . . . , r, f∗ = g∗.
This condition can be further refined to hi(x) < 0 for all i such that hi is nonaffine. As a result, Slater’s
condition is reduced to feasibility for LP’s.

11.2 Karush-Kuhn-Tucker (KKT) Conditions

For the given problem (11.1), the KKT conditions are:

(1) 0 ∈ ∂x
(
f(x) +

∑m
i=1 uihi(x) +

∑r
j=1 vj`j(x)

)
(stationary)

(2) ui · hi(x) = 0 for all i (complementary slackness)
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(3) hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

(4) ui ≥ 0 for all i (dual feasibility)

Theorem 11.1 For x∗ and u∗, v∗ to be primal and dual solutions, KKT conditions are sufficient.

Proof: Sufficiency: if ∃x∗ and u∗, v∗ that satisfy the KKT conditions, g(u∗, v∗) = f(x∗)+
∑m
i=1 u

∗
i hi(x

∗)+∑r
j=1 v

∗
j `j(x

∗) = f(x∗) The first equality holds from stationarity, since f(x) +
∑m
i=1 uihi(x) +

∑r
j=1 vj`j(x)

is convex, so any stationary point is a minimizer. and the second holds by complementary slackness. By
weak duality, x∗ and u∗, v∗ are optimal. It always implies that the duality gap is 0.

Theorem 11.2 For a problem with strong duality (e.g. assume Slater’s condition: convex problem and there
exists x strictly satisfying nonaffine inequality constraints),

x∗ and u∗,v∗ are primal and dual solutions ⇐⇒ x∗ and u∗,v∗ satisfy the KKT conditions

Proof: Sufficiency: Follows from Theorem 11.1.

Necessity: Let x∗ and u∗, v∗ be primal and dual solutions, and suppose we know strong duality holds.Then

f(x∗) = g(u∗, v∗)

= min
x

(
f(x) +

m∑
i=1

u∗i hi(x) +

r∑
j=1

v∗j `j(x)
)

≤ f(x∗) +

m∑
i=1

u∗i hi(x
∗) +

r∑
j=1

v∗j `j(x
∗)

≤ f(x∗)

The LSH equals RHS, so all inequalities in the equation must be equalities. Looking at the KKT conditions
one by one, primal and dual feasibility holds, by virtue of optimality. Stationarity comes from the fact that
x∗ minimizes f(x) +

∑m
i=1 u

∗
i hi(x) +

∑r
j=1 v

∗
j `j(x). Since x∗ is the minimizer, it must be a stationary point

for this function. Complementary slackness comes from f(x∗) +
∑m
i=1 u

∗
i hi(x

∗) +
∑r
j=1 v

∗
j `j(x

∗) = f(x∗),

since we must have
∑m
i=1 u

∗
i hi(x

∗) = 0 and they are each non-negative.

One thing to note: for a differentiable function f , we cannot use ∂f(x) = {∇f(x)} unless f is convex when
applying the stationarity conditions.

11.3 History of KKT

Previously known as the KT (Kuhn-Tucker) conditons:

• Appeared in publication by Kuhn and Tucker in 1951

• Later people discovered that Karush derived the conditions in his unpublished master’s thesis of 1939
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For unconstrained problems, the KKT conditions are nothing more than the subgradient optimality
condition. For general convex problems, the KKT conditions could have been derived entirely from
studying optimality via subgradients

0 ∈ ∂f(x∗) +

m∑
i=1

N{hi≤0}(x
∗) +

r∑
j=1

N{lj=0}(x
∗)

where NC(x) is the normal cone of C at x

11.4 KKT Examples

This section steps through some examples in applying the KKT conditions.

11.4.1 Quadratic with Equality Constraints

Consider for Q ≥ 0,

minimize
x

1

2
xTQx+ cTx

subject to Ax = 0

(For example, this corresponds to Newton step for the constrained problem minx f(x) subject to Ax = b
Problem is convex, with no inequality constraints.
So by KKT conditions: x is a solution if and only if[

Q AT

A 0

] [
x
u

]
=

[
−c
0

]
for some u.

11.4.2 Water-Filling

Consider the following example from B&V p245:

minimize
x

−
n∑
i=1

log(αi + xi)

subject to x ≥ 0, 1Tx = 1

The problem arises from information theory:
This problem arises from information theory, where each variable xi represents the transmitter power allo-
cated to the i-th channel and log(αi + xi) gives the capacity or communication rate of the channel. The
problem can be regarded as allocating a total power of one to the channels in order to maximize the total
communication rate.

KKT conditions give:

− 1

αi + xi
− ui + v = 0, i = 1, · · · , n

ui · xi = 0, i, · · · , n

x ≥ 0, 1Tx = 1, u ≥ 0
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Eliminate u:

− 1

αi + xi
≤ v, i = 1, · · · , n

xi

(
v − 1

αi + xi

)
= 0, i, · · · , n

x ≥ 0, 1Tx = 1

Then we can argue that stationarity and complementary slackness imply

xi =

{
1
v − αi if v < 1

−αi

0 if v < 1
−αi

= max

{
0,

1

v
− αi

}
, i = 1, · · · , n

To guarantee feasibility of x so that 1Tx = 1 holds, need

n∑
i=1

max

{
0,

1

v
− αi

}
= 1

Results in a univariate equation, which is piece-wise linear in 1
v and not hard to solve.

The problem is referred to as water-filling

11.4.3 Support Vector Machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, the support vector machine problem is:

min
β,β0,ξ

1

2
‖β‖22 + C

N∑
i=1

ξi

s.t. ξ ≥ 0, i = 1, · · · , n
yi(x

T
i β + β0) ≥ 1− ξi, i = 1, · · · , n

Introduce dual variables v, w ≥ 0. KKT stationarity condition:

0 =

n∑
i=1

wiyi, β =

n∑
i=1

wiyixi, w = C1− v

Complementary slackness:

viξi = 0, wi(1− ξi − yi(xTi β + β0)) = 0, i = 1, · · · , n

At optimality, we have β =
∑n
i=1 wiyixi, and wi is nonzero only if yi(x

T
i β + β0) = 1 − ξi. Such points are

called the support points.
For support point i,

• if ξi = 0, then xi lies on the edge of margin, and wi ∈ (0, C]

• if ξi 6= 0, then xi lies on the wrong side of the margin, and wi = C.

KKT conditions is not a solution method, but gives a better understanding of the solution. In fact, we can
apply KKT conditions to screen away non-support points before performing optimization.
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11.5 Constrained and Lagrange Forms

Lemma 11.3 For t ∈ R and λ ≥ 0, the following forms are equivalent assuming convex f, h, and that the
constrained form is strictly feasible:

Constrained Form (C) minx f(x) subject to h(x) ≤ t
Lagrange Form (L) minx f(x) + λ · h(x)

Proof: We will show that the constrained form and the lagrange form are equivalent given convex f, h,
where (C) is strictly feasible.

(C) to (L) If (C) is strictly feasible (∀x s.t. h(x) < t), then strong duality holds. By the stationary
condition, we have that

f(x∗) + λ · (h(x∗)− t),

for x∗ that minimizes the Lagrangian of (C) for some λ ≥ 0. We can see that x∗ also minimizes (L). Hence,
x∗ is also a solution in (L).

We have shown that ⋃
λ≥0

{ solutions in (L)} ⊇
⋃

t∈{t :h(x)<t, ∀x}

{solutions in (C)}

(L) to (C) If x∗ is a solution in (L), then the KKT conditions for (C) are satisfied by taking t = h(x∗).

⋃
t≥0

{ solutions in (C)} ⊇
⋃
λ≥0

{solutions in (L)}

Hence, we have shown a nearly perfect equivalence.

Note that when the only value of t that leads to a feasible but not strictly feasible constraint set is t = 0,
then this is a perfect equivalence.
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11.6 Uniqueness in `1 Penalized Problems

Theorem 11.4 Let f be differentiable and strictly convex, let X ∈ Rn×p, λ > 0. Consider

min
β
f(Xβ) + λ‖β‖1.

If the entries of X are drawn from a continuous probability distribution (on Rnp), then with probability 1,
there is a unique solution and it has at most min{n, p} nonzero components.
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