
10-725/36-725: Convex Optimization Fall 2019

Lecture 14: Newton’s Method (October 14)
Lecturer: Ryan Tibshirani Scribes: Dennis Li, Divyansh Pareek, Shahriar Noroozizadeh

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

14.1 Last Time: dual correspondences

Given a function, f : Rn → R, we define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Key properties and examples of conjugates include:

• Conjugate f∗ is always convex (regardless of convexity of f), because it is point wise maximum of
function of y.

• When f is quadratic in Q � 0, f∗ is a quadratic in Q−1. In fact, when f(x) = 1
2x

TQx, where Q � 0,
then f∗(y) = 1

2x
TQ−1x.

• When f is a norm, f∗ is indicator of the dual norm unit ball.

• When f is closed and convex, x ∈ ∂f∗(y)⇐⇒ y ∈ ∂f(x).

Conjugate’s relationship with duality, also called Fenchel duality:

Primal: min
x
f(x) + g(x)

Dual: max
u
−f∗(u)− g∗(−u)

14.2 Newton’s Method

Now, we’re going to introduce a second-order method called Newton’s method, and draw a comparison
between the first order method gradient descent and Newton’s method.

Given unconstrained, smooth convex optimization

min
x
f(x)

where f is convex, twice differentiable, and dom(f) = Rn, Recall that gradient descent chooses initial
x(0) ∈ Rn, and repeats

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, ...

14-1

14-2 Lecture 14: Newton’s Method (October 14)

In comparison, Newton’s method repeats

x(k) = x(k−1) − (∇2f(x(k−1)))−1∇f(x(k−1))), k = 1, 2, 3, ...

where ∇2f(x(k−1)) is the Hessian matrix of f at x(k−1).

14.2.1 Newton’s method interpretation

Recall the motivation for gradient descent step at x: we minimize the quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

over y, and this yields the update x+ = x− t∇f(x). ∇f(x)T (y − x) is the first order term, and 1
2t‖y − x‖

2
2

is the second order term that’s the quadratic approximation of f(y) around the point x.

In comparison, Newton’s method uses in a sense a better quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

and minimizes over y to yield the update rule x+ = x− (∇2f(x))−1∇f(x). Note that Newton’s method does
not use step size t for simplicity.

14.2.2 Example Newton’s method vs gradient descent

Now, let’s see an example of how Newton’s method performs compared to gradient descent. We consider
the problem of minimizing

f(x) = (10x21 + x22)/2 + 5 log(1 + e−x1−x2)

Note that this is a nonquadratic function, because if it were, then Newton’s method would just take one step
and reaches the minimum.

Lecture 14: Newton’s Method (October 14) 14-3

We compare gradient descent (black curve) to Newton’s method (blue curve), where both take steps of
roughly same length, just moving towards different directions. Notice that Newton’s method is able to go
straight at the minimum, whereas gradient descent takes the direction always orthogonal to the tangent line
at any one point of the contour.

14.3 Outline

The topics of today’s lecture include:

• Interpretations and properties

• Backtracking line search

• Convergence analysis

• Equality-constrained Newton

• Quasi-Newton preview

14.4 Linearized optimality condition

An alternative interpretation of Newton’s step at x is that we seek a direction v so that ∇f(x+ v) = 0. Let
F (x) +∇f(x). Consider linearizing F around x, via first-order approximation.

0 = F (x+ v) ≈ F (x) +DF (x)v

Solving for v yields v = −(DF (x))−1F (x) = −(∇2f(x))−1∇f(x).

In the above figure, ∆xnt = −(∇2f(x))−1∇f(x) is the Newton step, and we can think of the Newton step
as the addition needed to satisfy linearized optimality condition, namely the v in ∇f(x+ v) = 0.

(Figure from B V page 486). History: work of Newton (1685) and Raphson (1690) originally focused
on finding roots of polynomials. Simpson (1740) applied this idea to general nonlinear equations, and
minimization by setting the gradient to zero.

14-4 Lecture 14: Newton’s Method (October 14)

14.5 Affine invariance of Newton’s method

An important property of Newton’s method is affine invariance. Given f , nonsingular A ∈ Rn×n. Let
x = Ay, and g(y) = f(Ay). Newton steps on g are

y+ = y − (∇2g(y))−1∇g(y)

= y − (AT∇2f(Ay)A)−1AT∇f(Ay)

= y −A−1(∇2f(Ay))−1∇f(Ay)

Hence

Ay+ = Ay − (∇2f(Ay))−1∇f(Ay)

i.e.

x+ = x− (∇2f(x))−1∇f(x)

As we just saw that for an arbitrary affine transformation A, applying Newton’s method on y yields y+, then
applying A on y+ to get x+ = Ay+, which is exactly the same as applying A on y first to get x and then
applying Newton’s method on x. Hence, we have shown that Newton’s method is affine invariant (progress
is independent of problem scaling), which is not true for gradient descent.

14.6 Newton Decrement

At a point x, we define the newton decrement as

λ(x) =
√
∇f(x)T (∇2f(x))−1∇f(x)

For notational convenience, let’s use gx = ∇f(x) and Hx = ∇2f(x) to denote the gradient and hessian. (If
x were n-dimensional, then gx ∈ Rn and Hx ∈ Rn×n). This quantity naturally comes up when we think
about the difference between f(x) and the minimum of the quadratic approximation. That is

f(x)−min
y

(f(x) + gTx (y − x) +
1

2
(y − x)THx(y − x))

= f(x)− (f(x)− 1

2
gTxH

−1
x gx)

=
1

2
λ(x)2

With this motivation, we can think of 1
2λ(x)2 ≤ ε as a reasonable stopping condition.

14.6.1 Alternate interpretation of Newton decrement

The newton direction at a point x is given by

vx = −(∇2f(x))−1∇f(x) = −H−1x gx

Then it’s straightforward to see that

λ(x) =
√
vTxHxvx = ‖vx‖Hx

This means that λ(x) is the length of the newton step in the norm defined by the hessian at x.

Lecture 14: Newton’s Method (October 14) 14-5

14.6.2 Affine Invariance of Newton Decrement

Define a generic affine transformation as

g(y) = f(Ay + b)

Then at x = Ay + b (and A non-singular), we can do the following algebra

λg(y)2 = ∇g(y)T (∇2g(y))−1∇g(y)

=⇒ λg(y)2 = (AT∇f(x))T (AT∇f(x)A)−1AT∇f(x)

=⇒ λg(y)2 = ∇f(x)TAA−1(∇f(x))−1(AT)−1AT∇f(x)

=⇒ λg(y)2 = λf (x)2

Hence the newton decrement, similar to the newton step, is affine invariant.

14.7 Backtracking Line Search

So far we’ve seen the pure Newton’s method. This need not converge. This is because pure newton’s
method is not guaranteed to be a descent method. To adjust for this we use damped Newton’s method.
This also takes the step in the newton direction but a scaled version of that; guaranteeing that the criterion
value decreases — ensuring descent.

x+ = x− t(∇2f(x))−1∇f(x) where t ≤ 1

The step size t is chosen by backtracking line search. We use parameters α ∈ (0, 12] and β ∈ (0, 1). At each
outer iteration, we start with t = 1 and run an inner loop :
while f(x+ tv) > f(x) + αt∇f(x)T v

t = βt
x← x+ tv
Here v = −(∇2f(x))−1∇f(x) which means ∇f(x)T v = −λ(x)2.
So loop condition is f(x+ tv) > f(x)− αtλ(x)2

Aside : Here starting with t = 1 at the beginning of each inner loop seems principled, since that is the pure
Newton’s method. So in spirit, we try to take the full newton step. But if that does not give us a decrease
in the criterion (objective), we shrink the step size by a multiplicative factor.

14.8 Example : Logistic Regression

Number of data points n = 500, number of covariates/features p = 100. Here’s a comparison of Gradient
descent (with backtracking) and Newton’s method (again, with backtracking).

14-6 Lecture 14: Newton’s Method (October 14)

This shows that newton’s method is in a totally different regime of convergence. As we will shortly see,
newton’s method is a (locally) quadratic convergence method. In terms of order notation :

Method Suboptimality after k iterations
Gradient Descent O(ck1)

NM (in quadratic convergence regime) O(c2
k

2)

Here c1 = (1−m
L) (since this is a strongly convex problem). We will see that c2 = 1

2 is a problem independent
constant for Newton’s method.

14.9 Convergence Analysis of Newton’s method

Our assumptions are :

• f is convex, twice differentiable and has domain dom(f) = Rn

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

We first elaborate on the last point. It means that ‖∇2f(x) −∇2f(y)‖op ≤ M‖x − y‖2. We can use other
norms also.

Theorem 14.1 Newton’s method (with backtracking line search) satisfies the two-stage convergence bounds

∃ 0 < η ≤ m2

M , γ > 0 and k0 ∈ Z+ such that

f(x(k))− f? ≤

{
f(x(0))− f? − γk if k ≤ k0
2m3

M2 (1
2)2

k−k0+1

if k > k0

For the proof, one can use γ = αβ2η2 mL2 . And k0 is the number of iterations until ‖∇f(x(k0+1))‖2 < η is
satisfied. We can give a sketch of the proof for the two phases :
Damped phase : ‖∇2f(x(k))‖ ≥ η. The only thing we can say is that the criterion will reduce by at least

Lecture 14: Newton’s Method (October 14) 14-7

some fixed positive quantity in each iteration. What remains is to show that such a quantity γ > 0 exists.
(Side note : Most iterations will require backtracking steps in the damped phase.) Also, note that the damped

phase will continue for at most k0 ≤ f(x(0))−f?

γ iterations (since criterion can’t decrease beyond f?).

Pure phase : ‖∇2f(x(k))‖ < η. It can be shown that backtracking always selects t = 1. Further it can be
shown that M

2m2 ‖∇f(x(k+1))‖2 ≤ (M
2m2 ‖∇f(x(k))‖2)2. Meaning that ‖∇f(x(k))‖2 converges quadratically to

zero. Also, once we enter the pure phase we won’t leave it because

‖∇f(x(k+1))‖2 ≤
2m2

M2
(
M

2m2
‖∇f(x(k))‖2)2 ≤ 2m2

M2
(
M

2m2
η)2 ≤ M

2m2
η2 ≤ M

2m2

m2

M
η =

η

2
≤ η (since η ≤ m2

M
)

Now, we can derive a bound on the number of iterations needed to reach an ε suboptimal point. We need
at most

f(x(0))− f?

γ
+ log2 log2(

ε0
ε

)

where ε0 = 2m3

M2 . A few notes :

• This is quadratic convergence, since the number of iterations for ε suboptimality is O(log log 1
ε). Com-

pare this to linear convergence O(log 1
ε) which is what gradient descent achieves under strong convexity.

• This quadratic convergence is local. After a fixed number of iterations k0 ≤ f(x(0))−f?

γ we’re guaranteed
this.

• The second term is practically a constant. log2 log2(1
ε) ≤ 6 for ε = 10−10

The above convergence analysis is called the classical analysis. A good point of this analysis is that it ex-
plains the two different convergence regimes observed in practice with Newton’s method (with backtracking).
However it contains constants that are usually unknown in practice (like m,M). Further, the iteration is
bound is riddled with all these constants (that are not affine invariant), and yet the underlying method is
indeed affine invariant (scale-free).

14.10 Self-Concordance

A scale-free analysis is possible for self-concordant functions.
A convex function f : R→ R is called self-concordant if

|f ′′′(x)| ≤ 2(f ′′(x))3/2 for all x

(Note that convexity ensures that (f ′′(x))3/2 is well defined since f ′′(x) ≥ 0 for all x)
A multivariate convex function f : Rn → R is called self-concordant if

g(t) = f(x+ tv) is self-concordant ∀ x ∈ dom(f),∀ v ∈ Rn

The above just means that the projection of f on any line is self-concordant.

14.10.1 Convergence analysis via Self-concordance

This bound does not depend on any unknown constants — gives an affine invariant bound.

14-8 Lecture 14: Newton’s Method (October 14)

Theorem 14.2 Newton’s method (with backtracking line search) requires at most

C(α, β)(f(x(0))− f?) + log log(
1

ε
)

iterations to reach an ε suboptimal point.

Note that here C(α, β) does not depend on any other constants like m,M as it did in the classical analysis.

14.10.2 Self Concordance Function Examples

• Linear functions (LP)

• Quadratic functions (QP)

• f(X) = − log(det(X)) on Sn++

• f(x) = −
∑n
i=1 log(xi) on Rn++

• g : Self-concordant −→ f(x) = g(Ax+ b) also self-concordant.

• Instead of 2 in the definition a general κ can be replaced.

• g : κ-self-concordant −→ f(x) = κ2

4 g(x) : 2-self-concordant.

14.11 Comparison to 1st-order methods

Newton’s method has its own pros and cons at high-level compared to the first order methods.
In terms of Memory, at each iteration we save an n× n Hessian which requires O(n2) storage, whereas for
the gradient we only require O(n) to store the n-dimensional gradient.
Regarding Computation also, we are solving a dense n × n system of linear equations for each itera-
tion of Newton’s method that take O(n3) as opposed to gradient iterations requiring scaling and adding
n-dimensional vector that takes O(n).
On the other hand, we have roughly the same cost regarding the Backtracking for both methods taking
O(n) time in the inner loop for contraction.
On the plus side for Newton’s method compared to gradient descent, regarding Conditioning, we have that
the gradient descent that can seriously degrade, Newton’s method unlike will not be affected by problem’s
conditioning.
The following plot shows f−f∗ of logistic regression example for gradient descent and Newton’s method with
the horizontal axis being parameterized in terms of time taken per iteration. We have that each gradient
descent step taking O(p) as compared to O(p3) of Newton’s step. We see a somewhat linear drop for gradient
descent and a faster drop for Newton’s method.

Lecture 14: Newton’s Method (October 14) 14-9

14.12 Sparse, structured problems

Newton’s method strives when the inner linear systems in Hessian can be solved efficiently and reliably. This
is the case when the Hessian is sparse, structured for all x that is called banded.

H = vg

{
O(n3) H: Dense

O(n) H: Banded

Examples of functions with structured Hessian:

• g(β) = f(Xβ) −→ ∇2g(β) = XT∇2f(Xβ)X −→ If ∇2f being diagonal and X being a structured
predictor matrix −→ ∇2g is also structured. Correlation is local.

• Minimizing f(β)+g(Dβ) with ∇2f diagonal, g non-smooth (prox hard to calculate), and D structured
penalty matrix −→ the Lagrange dual: −f∗(−DTu)− g∗(−u). For many cases including when f(β) =∑p
i=1 fi(βi), ∇2f∗ is diagonal and thus the Hessian in the dual is structured as a result.

Example: f(u) = −yTu +
∑n
i=1 b(ui) (for instance for least squares b(u) = u2

2) and here the Hessian is
diagonal. We could also use logistic regression (log(1 + exp(u).

14.13 Equality-constrained Newton’s Method

For minimization problem with equality constrained of following we have several options.

min
x
f(x) subject to Ax = b

The first option is to eliminate the equality constraints by considering x to be Fy+x0 with F spanning
the null space of A, Ax0 = b and then solving in terms of y. The second option is relying on deriving
Lagrange dual function of −f∗(−AT v) − btv, checking that the strong duality holds, and if we are lucky
we can then express the optimal x∗ in terms of v∗. Lastly, we can use the Equality-constrained Newton
that is the most straightforward option in most applications. In this method:
Start with x(0) s.t. Ax(0) = b.

14-10 Lecture 14: Newton’s Method (October 14)

Repeat updates:
x+ = x+ tv where v = arg minAz=0∇f(x)T z + 1

2z
T∇2f(x)z (Direction in null space of A).

We have that x+ is feasible because Ax+ = Ax + tAv = b + 0 = b. We also have that v is solution for
minimizing a quadratic program subject to equality constraints.
The KKT conditions satisfied by v (for some w) are:(

∇2f(x) AT

A 0

) (
v
w

)
=

(
−∇f(x)

0

)
This results in v (Newton direction) being given by solving a bigger linear system but again in terms of the
Hessian.

14.14 Quasi-Newton methods

When Hessian is too expensive or singular then we can use the quasi-Newton method that approximates
∇2f(x) with H � 0. The updates are such that: x+ = x− tH−1∇f(x).
Here we approximate the Hessian (H) at each step with the goal of having the inverse to be cheap both in
terms of application and storage. Quasi-Newton is converges fast (superlinear) but not as fast as Newton,
as an estimate, every n steps of quasi-Newton method make the same progress as one Newton step. There
are many different varities of quasi-Newton methods but almost all try to propagate the computation of
hessian approximate among their iterations.

References

[1] R. Tibshirani, Lecture notes for 10-725, CMU, Fall 2019

[2] S. Boyd and L. Vandenberghe (2004), “Convex Optimization“, Chapters 9 and 10

[3] Y. Nesterov(1998), “Introductory lectures on convex optimization: a basic course“, Chapter
2

[4] Y. Nesterov and A. Nemirovskii (1994), “Interior-point polynomial methods in convex
programming“, Chapter 2

[5] J. Nocedal and S. Wright (2006), “Numerical optimization“, Chapters 6 and 7

[6] L. Vandenberghe, Lecture notes for EE 236C, UCLA, Spring 2011-2012

