
10-725/36-725: Convex Optimization Fall 2019

Lecture 24: November 18
Lecturer: Yuanzhi Li Scribes: Stefani Karp, Chirag Pabbaraju

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

24.1 Non-convex Optimization

In convex optimization problems, if the criterion is differentiable, we can follow the direction of the negative
gradient; if we arrive at a point with zero gradient, we have found a minimum. In contrast, in non-convex
optimization problems, the criterion landscape has many local minima as well as saddle points (points with
zero gradient that are not local minima). Naively following the direction of the negative gradient may not lead
us to even a local minimum. In fact, in high dimensions, one can construct a function where gradient descent
almost always gets stuck at a saddle point. The rise of deep learning has increased the motivation to study
non-convex optimization, since the loss landscape of these neural networks is typically highly non-convex.

The goals in non-convex optimization are therefore the following:

• Find at least one local minimum

• If possible, find the global minimum

The second goal is generally hard, but it can be achieved in certain special settings. In this lecture, however,
we focus on how to achieve the first goal efficiently. The algorithm we discuss is called Neon2 [AL18].

24.2 Definitions

Given a second-order differentiable function f : Rd → R

• L-Lipschitzness: L = supx∈Rd‖∇f(x)‖2. This implies that for all x, y ∈ Rd,

|f(x)− f(y)| ≤ L‖x− y‖2.

In non-convex optimization, though, Lipschitzness usually doesn’t matter as much as the function’s
smoothness matters.

• β-Smoothness: β = supx∈Rd‖∇2f(x)‖sp where ‖·‖sp is the spectral norm. Smoothness implies:

– (Upper quadratic bound) For every x, y ∈ Rd,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
β

2
‖y − x‖22.

24-1

24-2 Lecture 24: November 18

– (Lower quadratic bound) For every x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉 − β

2
‖y − x‖22.

Note: For convex functions, the same upper bound applies, but the lower bound is instead linear:
f(y) ≥ f(x) + 〈∇f(x), y − x〉.

• γ-Lipschitzness of Hessian: For all x, y ∈ Rd, ‖∇2f(x)−∇2f(y)‖sp ≤ γ‖x− y‖2.

This implies that for all x, τ ∈ Rd, the quadratic approximation is tight up to ±γ‖τ‖32. Formally:

f(x+ τ) = f(x) + 〈∇f(x), τ〉+
1

2
τT∇2f(x)τ ± γ‖τ‖32

• (Second order) Local minima: ∇f(x) = 0 and ∇2f(x) is positive semidefinite - i.e., ∇2f(x) � 0.

• Saddle Point: ∇f(x) = 0, ∇2f(x) is not positive semidefinite - i.e., ∃v ∈ Rd such that vT∇2f(x)v < 0.

With the above definitions, our non-convex optimization goal can be formally stated as follows:
Given f : Rd → R that is β−smooth and has a γ−Lipschitz Hessian, find a point x in time poly(1

ε ,
1
δ , γ, β, d)

such that:

• ‖∇f(x)‖2 ≤ ε (gradient is approximately 0)

• ∇2f(x) � −δI (Hessian is almost PSD)

for all ε, δ > 0.

Can any algorithm achieve this? We now analyze two candidate algorithms, one well-known in the non-convex
optimization community but lacking a formal name (hence the affectionately-dubbed name “Algorithm
Folklore”). The other is Neon2.

Lecture 24: November 18 24-3

24.3 Approach 1: Algorithm “Folklore”

• Do gradient descent until we arrive at a point x′ with ‖∇f(x′)‖2 ≤ ε.

– Recall the quadratic upper bound for β-smooth functions:

f(x− η∇f(x)) ≤ f(x)− η‖∇f(x)‖22 + η2β2‖∇f(x)‖22

– Thus, large gradient =⇒ decrease function value using gradient descent.

• Check if ∇2f(x′) � −δI.

– If yes, we are done.

– If not, find a unit eigenvector v such that vT∇f(x′)v ≤ −δ. Can be done efficiently via eigenvector
solvers.

– Do one step of Hessian Descent: For a step size η, if f(x′ + ηv) ≤ f(x′ − ηv), go to x′′ = x′ + ηv.
Otherwise, go to x′′ = x′ − ηv.

• Repeat gradient descent.

Notes:

• Since f(x′ + τ) = f(x′) + 〈∇f(x′), τ〉+ 1
2τ

T∇2f(x)τ ± γ‖τ‖32,

min(f(x′ + ηv), f(x′ − ηv)) ≤ 1

2
(f(x′ + ηv) + f(x′ − ηv)) ≤ f(x′) +

η2

2
vT∇2f(x′)v + γη3

≤ f(x′)− η2δ

2
+ γη3

Taking η = δ
4γ , the function value is decreased by at least δ3

64γ2 , i.e., f(x′′) ≤ f(x′)− δ3

64γ2 .

• In other words, Hessian descent will decrease the function value by Ω(δ3) when the negative eigenvalue
of the Hessian is ≤ −δ; i.e., the more non-convex the function is at this point, the more descent we
get.

• Suppose f is non-negative and the initial point xinit satisfies f(xinit) ≤ 1.

• Each iteration of gradient descent decreases the function value on the order ε2 and each iteration of
Hessian descent decreases the function value on the order δ3.

• Thus, this algorithm achieves the goals (i.e., ‖∇f(x)‖2 ≤ ε and ∇2f(x) � −δI) within a total of O
(

1
ε2

)
gradient evaluations and O

(
1
δ3

)
Hessian eigenvector solver steps.

24.4 Approach 2: Algorithm Neon2

It turns out that we can achieve the goals faster by both reducing the number of gradient evaluations and
completely getting rid of eigenvector solvers. The intuitive workflow to achieve this is via the following loopy
argument:

• First reduce the number of gradient evaluations at the cost of increasing the number of Hessian eigen-
vector solvers (purely for analysis purposes).

• Then reduce the number of Hessian eigenvector solvers at the cost of increasing the number of gradient
evaluations.

24-4 Lecture 24: November 18

Inspiration from convex optimization

For a convex function f , we can reduce the number of gradient evaluations to find a point x with ‖∇f(x)‖2 ≤
ε using Nesterov Accelerated Gradient Descent (AGD) [N83]. AGD finds a point x such that f(x) ≤
miny∈Rd f(y) + ε2 in:

• O
(
1
ε

)
gradient evaluations for any smooth, convex function f (vs. O

(
1
ε2

)
for GD without acceleration).

• O
(

1√
α

log 1
ε

)
gradient evaluations if f is α-strongly convex.

Note: If f is 1-smooth, then f(x) ≤ miny∈Rd f(y) + ε2 implies ‖∇f(x)‖2 ≤ ε.

So for smooth, convex f , AGD can find a point x with ‖∇f(x)‖2 ≤ ε in O
(
1
ε

)
iterations, which is faster

than GD’s O
(

1
ε2

)
iterations.

Algorithm

Consider 2 different cases –

• The function is truly non-convex locally (i.e., ∇2f(x) has at least one very negative eigenvalue): do
Hessian descent (which works better/converges very fast when the function is very non-convex).

• The function is not very non-convex locally (i.e., it is approximately convex locally, in the sense that
∇2f(x) has only small negative eigenvalues): can we use AGD?

This yields the following algorithm:

1. Find the eigenvector of ∇2f(x) with the most negative eigenvalue. (using 1 Hessian eigenvector solver)

2. If the eigenvalue is sufficiently negative, do one step of Hessian descent.

3. Otherwise, do accelerated gradient descent (AGD) until convergence.

4. Repeat.

Compared to Algorithm “Folklore”, this algorithm has fewer gradient evaluations (Step 3) at the cost of
more Hessian eigenvector solvers (Step 1).

Analysis

For simplicity, assume β = γ = 1. Set δ1 = 1
100ε

0.5 (threshold for “sufficiently negative” eigenvalues).
So if ∇2f(x0) � −δ1I, do AGD. Otherwise, do Hessian descent, which decreases the function value by
Ω(δ31) = Ω(ε1.5). This means we can do at most O

(
1
ε1.5

)
iterations of Hessian descent.

The trickier part of the analysis is for Step 3 (AGD). Define the δ1-strongly convex function g(x) as follows:

g(x) = f(x) + 4δ1 ‖x− x0‖22 + 4× 1‖x−x0‖2≥δ1 (‖x− x0‖2 − δ1)
2

Lecture 24: November 18 24-5

Source: [AL18]

Note: It’s not true in general that g(x) is minimized at x0; it’s true here due to the shape of f(x) at x0.

Inside the 2δ1 region around x0, the function is like a quadratic function with quadratic coefficient δ1.
Outside the 2δ1 region around x0, the coefficient is a constant (so curvature is much higher).

Thus, g(x) is a δ1-strongly convex function (globally).

Do AGD on g(x) and find a point x1 such that:

g(x1) ≤ g(x0) + ε2

and thus
‖∇g(x1)‖2 ≤ ε2

in O
(

1√
δ1

log 1
ε

)
gradient evaluations.

We now consider two cases for x1.

1) ‖x1 − x0‖2 ≥ δ1:

f(x1) ≤ g(x1)− 4δ1‖x1 − x0‖22 by definition of g(x)

≤ g(x1)− 4δ31 by assumption on ‖x1 − x0‖2
≤ g(x0) + ε2 − 4δ31 because AGD converges to x1

= f(x0) + ε2 − 4δ31 by definition of g

= f(x0)− Ω(ε1.5) because ε1.5 dominates ε2 for ε < 1

Thus, f(x1) ≤ f(x0) − Ω(ε1.5), so the function value decreases. In a handwavy way, this makes sense. At
x0, g and f are equal. However, outside the δ1 range, g is much larger than f . So if g(x1) is still ε2-close to
g(x0) (or significantly lower), then it must be the case that f(x1) is less than f(x0).

2) ‖x1 − x0‖2 ≤ δ1 (intuitively, f is close to g in this region, since the indicator component of g is 0):

By definition of g(x), with the indicator component of g set to 0, we have:

∇f(x1) = ∇g(x1)− 8δ1(x1 − x0)

=⇒ ‖∇f(x1)‖2 ≤ ‖∇g(x1)‖2 + 8δ1‖x1 − x0‖2
=⇒ ‖∇f(x1)‖2 ≤ ‖∇g(x1)‖2 + 8δ21 ≤ ε since ‖x1 − x0‖2 ≤ δ1

i.e., the gradient of f at x1 is small.

24-6 Lecture 24: November 18

Thus, at every step of the algorithm, we need 1 Hessian eigenvector solver and up to Õ
(

1√
δ1

)
= Õ

(
1

ε0.25

)
gradient evaluations to arrive at one of the following cases: We either reach a point x1 for which ‖∇f(x1)‖2 ≤
ε, in which case, we are done. Or, if we don’t reach a such a point x1, we necessarily decrease the function
value by at least Ω

(
ε1.5

)
(either through Step 2 of the algorithm or Part 1 of Step 3). Also, this can only

then happen at most O(1
ε1.5) times. Thus, there are O

(
1
ε1.5

)
steps (with one Hessian eigenvector solver per

step) of Õ(1
ε0.25) gradient evaluations, to account for a final total of Õ

(
1

ε1.75

)
gradient evaluations before

necessarily finding a point x such that ‖∇f(x)‖2 ≤ ε.

Eliminating Hessian eigenvector solvers

At this point, we still require O(1
ε1.5) calls to the Hessian eigenvector solver to achieve our overall goal. We

can state the goal of the Hessian eigenvector solver as the following (it suffices to allow approximation up to
constant factors): Find a unit vector w such that

wT∇2f(x)w ≤ −0.9δ1.

Can we do this efficiently? In particular, can we do it within O(1
ε0.25) gradient evaluations?

We recall the power method at this juncture. The power method can give us the most negative eigenvector-
value pair in O(1

δ1
) iterations of computing a matrix-vector multiplication. However, this is inefficient, and it

turns out that we can further speed this process up to O(1√
δ1

) by the Lanzos method/Chebyshev polynomial

methods. With this optimization in place, we are at a point where we can compute the most negative
eigenvector-value pair in O(1√

δ1
) iterations of computing a matrix-vector multiplication. The final inefficient

piece of computation that then remains is the matrix-vector multiplication, namely ∇2f(x)z.

Recalling the definition of the Hessian, we have that

∇2f(x)z = lim
η→0

∇f(x+ ηz)−∇f(x)

η
.

Thus, we only require 2 evaluations of the gradient, namely at at x+ ηz and x, and provided that η is small,
we should be good.

Critical lemma of Neon2: η only needs to be 1
poly(1/δ1)

small, and the approximation error won’t mess

up the eigenvector solver (via “stability analysis” of optimization algorithms, which is very hard in general).

Overall, this means we need O
(

1
ε1.75

)
= O

(
1
δ3.51

)
gradient evaluations to replace the Hessian eigenvector

solvers.

Conclusion

Neon2 achieves the goal within (ignoring poly(γ, β) factors, which we set to 1 at the beginning):

Õ
(

1
ε1.75

)
+O

(
1
δ3.5

)
gradient evaluations of f

24.5 Parting Thoughts

Unlike convex optimization, non-convex optimization is rarely considered as the general optimization prob-
lem: min f(x). Instead, we should leverage the structure/properties of f (e.g., f is a neural network) to

Lecture 24: November 18 24-7

optimize f more efficiently. Thus, Neon2 - although it’s the most efficient known algorithm (to this date)
for general non-convex optimization - only addresses a very, very small fraction of non-convex optimization
(i.e., the cases where we know nothing about f that could help us optimize f more efficiently).

References

[AL18] Z. Allen-Zhu and Y. Li, “Neon2: Finding Local Minima via First-Order Oracles,” Proceed-
ings of the 32nd International Conference on Neural Information Processing Systems, 2018,
pp. 3720–3730.

[N83] Nesterov, Yurii E. ”A method for solving the convex programming problem with convergence
rate O(1/k2).” Dokl. akad. nauk Sssr. Vol. 269. 1983.

