10-725/36-725: Convex Optimization

Fall 2019

Lecture 16: Oct 21

Lecturer: Lecturer: Ryan Tibshirani Scribes: Wentai Zhang, Haiguang Liao, Elan Rosenfeld

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

16.1 Purturbed KKT conditions, revisited

16.1.1 Barrier versus primal-dual method

Difference between the two methods:

- Both can be motivated in terms of purturbed KKT conditions
- Primal-dual interior-point methods take one Newton step, and move on
- Primal-dual interior-point iterates are not necessarily feasible
- Primal-dual interior-point methods are often more efficient, as they can exhibit better than linear convergence
- Primal-dual interior-point methods are less intuitive

16.1.2 Purturbed KKT conditions

Recall we can motivate barrier method iterates $(x^*(t), u^*(t), v^*(t))$ in terms of the perturbed KKT conditions:

$$\nabla f(x) + \sum_{i=1}^{m} u_i \nabla h_i(x) + A^T v = 0 u_i h_i(x) = -(1/t) 1 \text{ i} = 1, \dots, \text{ m} h_i(x) \le 0, \text{ i} = 1, \dots, \text{ m}, Ax = b u_i \ge 0, \text{ i} = 1, \dots, \text{ m}$$

Only difference between these and actual KKT conditions for our original problem is second line: these are replaced by: $u_i h_i(x) = 0$ i = 1,..., m, i.e., complementary slackness in actual KKT conditions.

16.1.3 Purturbed KKT as nonlinear system

We can view this as a nonlinear system of equations, written as:

$$r(x, u, v) = \begin{bmatrix} \nabla f(x) + Dh(x)^T u + A^T v \\ -diag(u)h(x) - (1/t)1 \\ Ax - b \end{bmatrix} = 0$$

where
$$h(x) = \begin{bmatrix} h_1(x) \\ \dots \\ h_m(x) \end{bmatrix}$$
, $Dh(x) = \begin{bmatrix} \nabla h_1(x)^T \\ \dots \\ \nabla h_m(x)^T \end{bmatrix}$

Newton's method, recall, is generally a root-finder for a non-linear system F(y) = 0. Approximating: $F(y + \Delta y) \simeq F(y) + DF(y)\Delta y$ leads to:

$$\Delta y = -(DF(y))^{-1}F(y)$$

We would apply this to r(x, u, v) = 0.

16.1.4 Newton on perturbed KKT, v1

From middle equation (relaxed complimentary slackness), note that $u_i = -1/(th_i(x))$, i = 1, ..., m. After eliminating u, we get:

$$r(x,v) = \begin{bmatrix} \nabla f(x) + \sum_{i=1}^{m} (-\frac{1}{th_i(x)}) \nabla h_i(x) + A^T v \\ Ax - b \end{bmatrix} = 0$$

Thus, the Newton root-finding update $(\Delta x, \Delta v)$ is determined by:

$$\begin{bmatrix} H_{bar}(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta v \end{bmatrix} = -r(x, v)$$

where $H_{bar}(x) = \nabla^2 f(x) + \sum_{i=1}^m \frac{1}{th_i(x)^2} \nabla h_i(x) \nabla h_i(x)^T + \sum_{i=1}^m (-\frac{1}{th_i(x)}) \nabla^2 h_i(x)$ This is just the KKT system solved by one iteration of Newton's method for minimizing the barrier problem.

16.1.5 Newton on perturbed KKT, v2

Approach 2: directly apply Newton root-finding update, without eliminating u. Introduce notation:

$$\begin{aligned} r_{dual} &= \nabla f(x) + Dh(x)^T u + A^T v \\ r_{cent} &= -diag(u)h(x) - (1/t)t \\ r_{prim} &= Ax - b \end{aligned}$$

called the dual, central, and primal residuals at y = (x, u, v). Now root-finding update $\Delta y = (\Delta x, \Delta u, \Delta v)$ is given by:

$$\begin{bmatrix} H_{pd}(x) & Dh(x)^T & A^T \\ -diag(u)Dh(x) & -diag(h(x)) & 0 \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta u \\ \Delta v \end{bmatrix} = -\begin{bmatrix} r_{dual} \\ r_{cent} \\ r_{prim} \end{bmatrix}$$

where $H_{pd}(x) = \nabla^2 f(x) + \sum_{i=1}^m u_i \nabla^2 h_i(x)$ Some notes:

- In v1, u is eliminated
- In v2, update directions for the primal and dual variables are inexorably linked together
- Also, v2 and v1 leads to different updates (nonequivalent)
- As we saw, one iteration of v1 is equivalent to inner iteration in the barrier method
- And v2 defines a new method called primal-dual interior-point method
- One complication: in v2, the dual iterates does not necessarily feasible for the original dual problem

16.2 Surrogate duality gap

Recap: For barrier mthod, the duality gap is m/t.

Theorem 16.1 For primal-dual interior-point method, the surrogate duality gap is:

$$\eta = -h(x)^T u = -\sum_{i=1}^m u_i h_i(x)$$

It is not a bonafide duality gap, since we cannot garantee $r_{prim} = 0$ and $r_{dual} = 0$. In perturbed KKT conditions, this value actually corresponds to $t = m/\eta$.

16.3 Primal-dual interior-point method

Start with $x^{(0)}$ such that $h_i(x^{(0)}) < 0, i = 1, ..., m$ and $u^{(0)} > 0, v^{(0)}$. (This makes both primal and dual feasible.) Define $\eta^{(0)} = -h(x^{(0)})^T u^{(0)}$. We fix $\mu > 1$, repeat for k = 1, 2, 3...

- Define $t = \mu m / \eta^{(k-1)}$ (make t bigger iteratively)
- Compute primal-dual update direction Δy (consists of $\Delta x, \Delta u and \Delta v$)
- Use backtracking to determine step size s
- Update $y^{(k)} = y^{(k-1)} + s\Delta y$
- Compute $\eta^{(k)} = -h(x^{(k)})^T u^{(k)}$
- Stop if $\eta^{(k)} \leq \epsilon$ and $(||r_{prim}||_2^2 + ||r_{dual}||_2^2) \leq \epsilon$

In this process, we update the value based on line search, which maintains the feasibility: $h_i(x) < 0, u_i > 0, i = 1, ..., m$. The stopping criterion is based on surrogate duality gap.

16.4 Backtracking line search

At each step, we must ensure we arrive at $y^+ = y + s\Delta y$, i.e.,

$$x^{+} = x + s\Delta x, u^{+} = x + s\Delta u, v^{+} = x + s\Delta u$$

that maintains both primal and dual feasibility: $h_i(x) < 0, u_i > 0, i = 1, ..., m$.

A multi-stage backtracking line search for this purpose:

start with largest step size $S_{max} \leq 1$ that makes $u + s\Delta u \geq 0$:

 $s_{max} = \min\{1, \min\{-u_i/\Delta u_i : \Delta u_i < 0\}\}$

Then, with parameters $\alpha, \beta \in (0, 1)$, we set $s = 0.999 s_{max}$, and

- Let $s = \beta s$, until $h_i(x^+) < 0, i = 1, ..., m$
- Let $s = \beta s$, until $||r(x^+, u^+, v^+)||_2 \le (1 \alpha s)||r(x, u, v)||_2$.

16.5 Highlight: Standard LP

Recall the standard form LP:

$$\min_{x} \quad c^{T}x$$
$$Ax = b$$
$$x \ge 0$$

for $c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$. Its dual is:

$$\max_{u,v} \quad b^T v$$
$$A^T v + u = c$$
$$u \ge 0$$

16.5.1 KKT conditions

The points x^* and (u^*, v^*) are respectively primal and dual optimal solutions if and only if they solve:

$$A^{T}v + u = c$$

$$x_{i}u_{i} = 0, \ i = 1, \dots, n$$

$$Ax = b$$

$$x, u > 0$$

The perturbed KKT conditions for the standard form LP are therefore:

$$A^{T}v + u = c$$

$$x_{i}u_{i} = \frac{1}{t}, i = 1, \dots, n$$

$$Ax = b$$

$$x, u > 0$$

What do the two interior point methods (barrier method and primal-dual method) do to solve this system? Barrier method (after eliminating u via substitution):

$$0 = r_{br}(x, v)$$

=
$$\begin{bmatrix} A^T v + \operatorname{diag}(x)^{-1}(1/t)\mathbf{1} - c \\ Ax - b \end{bmatrix}$$

where **1** is the all-ones vector. Set $0 = r_{br}(y + \Delta y) \approx r_{br}(y) + Dr_{br}(y)\Delta y$, i.e., solve

$$\left(\begin{bmatrix} -\operatorname{diag}(x)^{-2}/t & A^T\\ A & 0 \end{bmatrix}\begin{bmatrix} \Delta x\\ \Delta v \end{bmatrix}\right) = -r_{br}(x,v)$$

and take a step $y^+ = y + s\Delta y$ (with line search for s > 0) and *iterate until convergence*. Then update $t = \mu t$.

Primal dual method:

$$\begin{aligned} 0 &= r_{pd}(x, u, v) \\ &= \begin{bmatrix} A^T v + u - c \\ x \odot u - (1/t) \mathbf{1} \\ Ax - b \end{bmatrix} \end{aligned}$$

Set $0 = r_{pd}(y + \Delta y) \approx r_{pd}(y) + Dr_{pd}(y)\Delta y$, i.e., solve

$$\left(\begin{bmatrix} 0 & I & A^T \\ \operatorname{diag}(u) & \operatorname{diag}(x) & 0 \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta u \\ \Delta v \end{bmatrix} \right) = -r_{pd}(x, u, v)$$

and take a step $y^+ = y + s\Delta y$ (with line search for s > 0), but only once. Then update $t = \mu t$.

16.5.2 Full Newton

Once backtracking allows for s = 1, i.e., we take one full Newton step, primal dual method iterates will be primal and dual feasible from that point onwards. To see this, note that $\Delta x, \Delta u, \Delta v$ are constructed so that

$$A^{T}\Delta v + \Delta u = -r_{dual} = -(A^{T}v + u - c)$$
$$A\Delta x = -r_{prim} = -(Ax - vb).$$

Therefore, after one full Newton step, $x^+ = x + \Delta x$, $u^+ = u + \Delta u$, $v^+ = v + \Delta v$, we have

$$r_{dual}^+ = A^T v^+ + u^+ - c = 0$$

 $r_{prim}^+ = Ax^+ - b = 0,$

so our iterates are primal and dual feasible.

See Sections 11.3.2 and 11.7.4 in Boyd & Vandenberghe for an example of solving a standard LP with these two methods. Primal-dual method is faster to converge to high accuracy, yet requires only slightly more iterations.