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16.1 Purturbed KKT conditions, revisited

16.1.1 Barrier versus primal-dual method

Difference between the two methods:

• Both can be motivated in terms of purturbed KKT conditions

• Primal-dual interior-point methods take one Newton step, and move on

• Primal-dual interior-point iterates are not necessarily feasible

• Primal-dual interior-point methods are often more efficient, as they can exhibit better than linear
convergence

• Primal-dual interior-point methods are less intuitive

16.1.2 Purturbed KKT conditions

Recall we can motivate barrier method iterates (x∗(t), u∗(t), v∗(t)) in terms of the perturbed KKT conditions:

∇f(x) +
∑m

i=1 ui∇hi(x) +AT v = 0
uihi(x) = −(1/t)1 i = 1,..., m
hi(x) ≤ 0, i = 1,..., m, Ax = b

ui ≥ 0, i = 1,..., m

Only difference between these and actual KKT conditions for our original problem is second line: these are
replaced by: uihi(x) = 0 i = 1,..., m, i.e., complementary slackness in actual KKT conditions.

16.1.3 Purturbed KKT as nonlinear system

We can view this as a nonlinear system of equations, written as:

r(x, u, v) =

∇f(x) +Dh(x)Tu+AT v
−diag(u)h(x)− (1/t)1

Ax− b

 = 0
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where h(x) =

h1(x)
. . .

hm(x)

, Dh(x) =

∇h1(x)T

. . .
∇hm(x)T


Newton’s method, recall, is generally a root-finder for a non-linear system F (y) = 0. Approximating:
F (y + ∆y) ' F (y) +DF (y)∆y leads to:

∆y = −(DF (y))−1F (y)

We woud apply this to r(x, u, v) = 0.

16.1.4 Newton on perturbed KKT, v1

From middle equation (relaxed complimentary slackness), note that ui = −1/(thi(x)), i = 1, ...,m. After
eliminating u, we get:

r(x, v) =

[
∇f(x) +

∑m
i=1(− 1

thi(x)
)∇hi(x) +AT v

Ax− b

]
= 0

Thus, the Newton root-finding update (∆x,∆v) is determined by:[
Hbar(x) AT

A 0

] [
∆x
∆v

]
= −r(x, v)

where Hbar(x) = ∇2f(x) +
∑m

i=1
1

thi(x)2
∇hi(x)∇hi(x)T +

∑m
i=1(− 1

thi(x)
)∇2hi(x)

This is just the KKT system solved by one iteration of Newton’s method for minimizing the barrier problem.

16.1.5 Newton on perturbed KKT, v2

Approach 2: directly apply Newton root-finding update, without eliminating u. Introduce notation:

rdual = ∇f(x) +Dh(x)Tu+AT v

rcent = −diag(u)h(x)− (1/t)t

rprim = Ax− b
called the dual, central, and primal residuals at y = (x, u, v). Now root-finding update ∆y = (∆x,∆u,∆v)
is given by:  Hpd(x) Dh(x)T AT

−diag(u)Dh(x) −diag(h(x)) 0
A 0 0

∆x
∆u
∆v

 = −

rdualrcent
rprim


where Hpd(x) = ∇2f(x) +

∑m
i=1 ui∇2hi(x)

Some notes:

• In v1, u is eliminated

• In v2, update directions for the primal and dual variables are inexorably linked together

• Also, v2 and v1 leads to different updates (nonequivalent)

• As we saw, one iteration of v1 is equivalent to inner iteration in the barrier method

• And v2 defines a new method called primal-dual interior-point method

• One complication: in v2, the dual iterates does not necessarily feasible for the original dual problem
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16.2 Surrogate duality gap

Recap: For barrier mthod, the duality gap is m/t.

Theorem 16.1 For primal-dual interior-point method, the surrogate duality gap is:

η = −h(x)Tu = −Σm
i=1uihi(x)

It is not a bonafide duality gap, since we cannot garantee rprim = 0 and rdual = 0. In perturbed KKT
conditions, this value actually corresponds to t = m/η.

16.3 Primal-dual interior-point method

Start with x(0) such that hi(x
(0)) < 0, i = 1, ...,m and u(0) > 0, v(0). (This makes both primal and dual

feasible.) Define η(0) = −h(x(0))Tu(0). We fix µ > 1, repeat for k = 1, 2, 3...

• Define t = µm/η(k−1) (make t bigger iteratively)

• Compute primal-dual update direction ∆y (consists of ∆x,∆uand∆v)

• Use backtracking to determine step size s

• Update y(k) = y(k−1) + s∆y

• Compute η(k) = −h(x(k))Tu(k)

• Stop if η(k) ≤ ε and (||rprim||22 + ||rdual||22) ≤ ε

In this process, we update the value based on line search, which maintains the feasibility: hi(x) < 0, ui >
0, i = 1, ...,m. The stopping criterion is based on surrogate duality gap.

16.4 Backtracking line search

At each step, we must ensure we arrive at y+ = y + s∆y, i.e.,

x+ = x+ s∆x, u+ = x+ s∆u, v+ = x+ s∆v

that maintains both primal and dual feasibility: hi(x) < 0, ui > 0, i = 1, ...,m.

A multi-stage backtracking line search for this purpose:

start with largest step size Smax ≤ 1 that makes u+ s∆u ≥ 0:

smax = min{1,min{−ui/∆ui : ∆ui < 0}}

Then, with parameters α, β ∈ (0, 1), we set s = 0.999smax, and

• Let s = βs, until hi(x
+) < 0, i = 1, ...,m

• Let s = βs, until ||r(x+, u+, v+)||2 ≤ (1− αs)||r(x, u, v)||2.
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16.5 Highlight: Standard LP

Recall the standard form LP:

min
x

cTx

Ax = b

x ≥ 0

for c ∈ Rn, A ∈ Rm×n, b ∈ Rm. Its dual is:

max
u,v

bT v

AT v + u = c

u ≥ 0

16.5.1 KKT conditions

The points x? and (u?, v?) are respectively primal and dual optimal solutions if and only if they solve:

AT v + u = c

xiui = 0, i = 1, . . . , n

Ax = b

x, u ≥ 0

The perturbed KKT conditions for the standard form LP are therefore:

AT v + u = c

xiui =
1

t
, i = 1, . . . , n

Ax = b

x, u ≥ 0

What do the two interior point methods (barrier method and primal-dual method) do to solve this system?

Barrier method (after eliminating u via substitution):

0 = rbr(x, v)

=

[
AT v + diag(x)−1(1/t)1− c

Ax− b

]
where 1 is the all-ones vector. Set 0 = rbr(y + ∆y) ≈ rbr(y) +Drbr(y)∆y, i.e., solve([

−diag(x)−2/t AT

A 0

] [
∆x
∆v

])
= −rbr(x, v)

and take a step y+ = y+s∆y (with line search for s > 0) and iterate until convergence. Then update t = µt.
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Primal dual method:

0 = rpd(x, u, v)

=

 AT v + u− c
x� u− (1/t)1

Ax− b


Set 0 = rpd(y + ∆y) ≈ rpd(y) +Drpd(y)∆y, i.e., solve 0 I AT

diag(u) diag(x) 0
A 0 0

∆x
∆u
∆v

 = −rpd(x, u, v)

and take a step y+ = y + s∆y (with line search for s > 0), but only once. Then update t = µt.

16.5.2 Full Newton

Once backtracking allows for s = 1, i.e., we take one full Newton step, primal dual method iterates will be
primal and dual feasible from that point onwards. To see this, note that ∆x,∆u,∆v are constructed so that

AT ∆v + ∆u = −rdual = −(AT v + u− c)
A∆x = −rprim = −(Ax− vb).

Therefore, after one full Newton step, x+ = x+ ∆x, u+ = u+ ∆u, v+ = v + ∆v, we have

r+dual = AT v+ + u+ − c = 0

r+prim = Ax+ − b = 0,

so our iterates are primal and dual feasible.

See Sections 11.3.2 and 11.7.4 in Boyd & Vandenberghe for an example of solving a standard LP with these
two methods. Primal-dual method is faster to converge to high accuracy, yet requires only slightly more
iterations.


