
10-725/36-725: Convex Optimization Fall 2019

Lecture 17: October 23rd Quasi Newton Method
Lecturer: Ryan Tibshirani Scribes: Danlei Zhu, John Fang, Swaminathan Gurumurthy

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

This lecture’s notes illustrate some uses of various LATEX macros. Take a look at this and imitate.

17.1 Motivation for Quasi-Newton Method

Recall that for unconstrained smooth convex optimization problem

min
x
f(x)

Gradient descent has global linear convergence while Newton’s method has (local) quadratic convergence.
But gradient descent iteration costs O(n) while Newton iteration costs O(n3).

Quasi-Newton has superlinear convergence but each iteration costs O(n2). In theory, n Quasi-Newtonian
steps is as expensive as one Newton step. However, Quasi-Newton methods are typically far cheaper in
practice.

17.2 Quasi-Newton Template

Let x(0) ∈ Rn, B(0) positive definite. For k = 1, 2, 3, . . . repeat

1. Solve B(k−1)s(k−1) = −∇f(x(k−1))

2. Update x(k) = x(k−1) + tks
(k−1)

3. Compute B(k) from B(k−1)

Requirements for B(k)

• Secant Equation Motivated by the one dimensional case:

F ′(x+) =
F (x+)− F (x)

x+ − x

we want B(k) to satisfy:
∇f(x(k))−∇f(x(k−1) = B(k)s(k−1)

Let y = ∇f(x+)−∇f(x) then equivalently we can write the condition as

y = B+s

17-1



17-2 Lecture 17: October 23rd Quasi Newton Method

• B+ is symmetric

• B+ is ”close” to B

• B positive definite =⇒ B+ positive definite

17.3 Updating B+

17.3.1 Symmetric Rank One Update (SR1): Failed Attempt

Rank one update is of the form
B+ = B + auuT

And the secant equation B+s = y yields

(auT s)u = y −Bs

This only holds if u is parallel to y −Bs. Put u = y −Bs, then the above gives a = 1
(y−Bs)T s

B+ = B +
(y −Bs)(y −Bs)T

(y −Bs)T s
(17.1)

To solve B+s+ = −∇f(x+) efficiently, we need to propagate inverses: C = B−1 to C+ = (B+)−1 using
Sherman-Morrison Formula

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

hence the inverse is updated by

C+ = C +
(S − Cy)(S − Cy)T

(S − Cy)T y
(17.2)

The shortcoming of SR1 is that it does not preserve positive definiteness.

17.3.2 Broyden-Fletcher-Goldfarb-Shanno Update (Rank Two)

Try rank two update of the form
B+ = B + auuT + bvvT

By secant equation y = B+s we have

y −Bs = (auT s)u+ (bvT s)v

Then putting u = y, v = Bs we solve for a, b and get

B+ = B − V ssTB

sTBs
+
yyT

yT s
(17.3)

This is called Broyden-Fletcher-Goldfarb-Shanno (BFGS) update.



Lecture 17: October 23rd Quasi Newton Method 17-3

Same as in rank one update, we hope to propagate the inverse, by Woodbury Formula

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1

Then in our case we have the update for the inverse C:

C+ = (I − syT

yT s
)C(I − ysT

yT s
) +

ssT

yT s
(17.4)

Cost of BFGS update is quite cheap. We are multiplying a matrix with a rank 1 matrix, which can be re-
written as multiplying a matrix and a vector. Hence, the cost is only O(n2), as opposed to the usual O(n3)
for matrix multiplication. And BFGS update preserves positive definiteness i.e. B positive definite
=⇒ B+ positive definite. Equivalently C positive definite =⇒ C+ positive definite. To see this we check

xTC+x = (x− sx

yT s
y)TC(x− sTx

yT s
y) +

(sTx)2

yT s

The first term on right hand side is positive since C is positive definite, and the second term is positive by
monotonicity of convex function

yT s = (∇f(x+)−∇f(x))T (x+ − x) ≥ 0

Hence we have xTC+x > 0. So C+ is positive definite.

17.3.3 Davidon-Fletcher-Powell (Alternate Rank Two)

In the BFGS method described earlier, we described a rank-two update for B, then applied the Woodbury
formula to find how to apply a rank-two update to the inverse C. However, one could also imagine that we
instead applied the rank-two update to C first.

C+ = C + auuT + bvvT

Then the by multiplying by y and using the secant equation s = C+y, we get

C+ = C − CyyTC

yTCy
+
ssT

yT s

and applying Woodbury shows the update for B is

B+ =

(
I − ysT

yT s

)
B

(
I − syT

yT s

)
+
yyT

yT s

We can see that these equations are mirrors of equations 17.3 and 17.4. This update is called David-
Fletcher-Powell (DFP). Just like in BFGS, the updates are O(n2) and preserve positive definiteness.
However, DFP is not as popular as BFGS.

17.3.4 Alternate Motivation for DFP

Note that B+ � 0 and B+s = y imply
yT s = sT b+s > 0

This is called the curvature condition, and it implies taht there exists M � 0 s.t. Ms = y.



17-4 Lecture 17: October 23rd Quasi Newton Method

There is another way to derive the DFP update. The motivation is the question “what is the minimal amount
that you can move from B while maintaining certain conditions such as the secant condition?”. Formally,

min
B+

‖W−1(B+ −B)W−T ‖F

s.t. B+ = (B+)T

B+s = y

where W is non-singular and WWT s = y. Solving this is actually the same as DFP.

17.4 Other Quasi-Newtonian Updates

So far, we have discussed SR1, DFP and BFGS. However, these are only a few of the many possible quasi-
Newtonian updates.

17.4.1 Broyden Class

One particular set of quasi-Newtonian updates is called the Broyden Class. These can be thought of as
updates that are some linear interpolation of BFGS and DFP. Formally, the Broyden class of updates is
defined by

B+ = (1− φ)B+
BFGS + φB+

DFP, φ ∈ R

By putting v = y
yT s
− Bs

sTBs
, we can re-write above as

B+ = B − BssTB

sTBs
+
yyT

yT s
+ φ(sTBs)vvT

Note that the three methods that we have described all belong to the Broyden class

• φ = 0: BFGS

• φ = 1: DFP

• φ = yT s
yT s−sTBs

: SR1

17.5 Convergence Analysis

We make the same assumptions as we did for Newton’s method for the convergence analysis of DFP and
BFGS, namely

• f is convex, twice differentiable and has dom(f) = Rn

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M



Lecture 17: October 23rd Quasi Newton Method 17-5

Under these assumptions, both DFP and BFGS converge globally with backtracking line search. Furthermore
for all k ≥ k0,

‖x(k) − x∗‖2 ≤ ck‖x(k−1) − x∗‖2
where ck → 0 and k →∞. Here k,ck depend on L,m,M . This is called local superlinear convergence.

17.6 Implicit-Form Quasi-Newton

Motivation: Quasi-Newton methods are significantly cheaper to compute than the original newton updates,
but still take O(n2) space and time. If n is large, storing or even forming the matrix C is intractable. Idea:
Instead of storing and computing C explicitly, we could use an implicit version by maintiaining all (y,s) pairs
(difference in gradient and difference in iterates pairs). This is especially useful if the number of updates
k << n.

Reminder that,
C+ = (1− syT /yT s)C(I − ysT /yT s) + ssT yT s

Thus, we should be able to compute C+, if we have all (y,s) pairs. But we don’t want to compute it. We
instead want to compute C+g directly at each iteration.

This can be done using two loops of length k using the algorithm shown below:

17.6.1 IFQN Algorithm

1. Let q = −∇f(xk)

2. For i = k-1, ... , 0:

(a) Compute αi = (s(i))T q/((y(i))T s(i))

(b) Update q = q − αy(i)

3. Let p = C(0)q

4. for i = 0, ... , k-1:

(a) Compute β = (y(i))T p/((y(i))T s(i))

(b) Update p = p+ (αi − β)s(i)

5. return p

Complexity Analysis
Explicit form requires n2 memory and time. Thus after k steps, it take O(kn2) time.
Implicit form (IFQN algo) takes O(kn) memory, since each (y, s) pairs each of size n need to be stored for
k iterations. Similarly, it takes total O(k2n) time after k steps. Thus, there are gains if k < n.

17.7 LBFGS

Motivation:
We saw that the IFQN algorithm has better computational and space complexity for k < n, however becomes
inefficient as k approaches n. In fact, in a lot of practical problems we observe that k > n. Idea:



17-6 Lecture 17: October 23rd Quasi Newton Method

Instead of using all k steps to compute C, we can use only the last m steps and assume an identity value
of C before that. This provides a total computational complexity of O(knm) and memory O(nm). For a
constant m, this effectively approaches the complexity of gradient descent. This method is considered the
’state of the art’ for many task (e.g. large scale least squares).

The algorithm is provided below:

17.7.1 LBFGS Algorithm

1. Let q = −∇f(xk)

2. For i = k-1, ... , k-m:

(a) Compute αi = (s(i))T q/((y(i))T s(i))

(b) Update q = q − αy(i)

3. Let p = Ĉ(k−m)q

4. for i = k-m, ... , k-1:

(a) Compute β = (y(i))T p/((y(i))T s(i))

(b) Update p = p+ (αi − β)s(i)

5. return p

Ĉ(k−m) is not stored but is a guess using some prior knowledge. A popular choice is Ĉ(k−m) = I

17.8 Stochastic quasi-Newton methods

An obvious extension to the previous formulation is to consider a stochastic approximation of C.

x(k) = x(k−1) − tkC(k−1)∇f(x(k−1), ζk)

where ζk is the noise variable introducing the stochasticity.

But it’s unclear if this is useful,

1. Can have at best sublinear convergence. Is the additional overhead of quasi-Newton worth it, over
plain SGD.

2. The computed C depends on the gradient estimates which are themselves noisy

Due to the above considerations, it is unclear if stochastic LBFGS would be useful in practical scenarios.
This is still an open research problem and is being investigated with much interest in the community

References

[T19] R. Tibshiranih , “Quasi Newton Method,” Lecture Slides for 10-725 Convex Optimization,
2019.


