
10-725/36-725: Convex Optimization Fall 2019

Lecture 9: September 25
Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Ziheng Cai, Jinjin Tian, Xuejian Wang

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

9.1 Motivation

To begin with, consider the following problem of minimizing an average of functions:

min
x

1

m

m∑
i=1

fi(x)

The gradient of the above objective function will be

∇
m∑
i=1

fi(x) =

m∑
i=1

∇fi(x)

If we apply gradient descent algorithm, we would be repeating the following steps:

x(k) = x(k−1) − tk ·
1

m

m∑
i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

However, gradient descent will be very costly if we have m in the order of, say, 1 millions. Instead, we can
apply the following algorithm:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, · · · ,m} is some chosen index at iteration k.

This algorithm is called the stochastic gradient descent or SGD (or incremental gradient descent). The
main appeal and motivations of using SGD are:

• The iteration cost of SGD is independent of m

• SGD can be a big savings in terms of memory usage.

Note: SGD is not necessarily a descent method!

9.2 Choosing Index ik

In general, there are two ways of choosing the index ik at iteration k of the SGD algorithm:

9-1

9-2 Lecture 9: September 25

• Randomized Rule: Every iteration we choose ik ∈ {1, · · · ,m} uniformly at random

• Cyclic Rule: We choose ik in the pattern of 1, 2, · · · ,m, 1, 2, · · · ,m, · · ·

In practice, randomized rule is more common. For randomized rule, we have

E[∇fik(x)] = ∇f(x)

so we can view SGD as an unbiased estimate of the gradient at each step.

9.3 Example: Stochastic Logistic Regression

To further illustrate the SGD algorithm, recall the formulation of logistic regression:

Given (xi, yi) ∈ Rp × {0, 1} with i = 1, · · · , n, we want to minimize f(β) with the following expression:

min
β
f(β) =

1

n

n∑
i=1

(
− yixTi β + log(1 + exp(xTi β))

)
The gradient of f(β) is ∇f(β) = − 1

n

∑n
i=1(yi − pi(β))xi, where pi(β) = exp(xTi β)/(1 + exp(xTi β)). This

computation is doable when n is moderate, but not when n is huge. In comparison, in each iteration step
of SGD we only need to compute −(yi − pi(β))xi for some i ∈ {1, · · · , n}. In terms of time complexity, we
have

• Full Gradient: one batch update costs O(np)

• Stochastic Gradient: one stochastic update costs O(p)

Clearly, the stochastic steps are much more affordable.

Figure 9.1 shows the “classic picture” for batch versus stochastic methods. The experiment is stochastic
logistic regression with n = 10 and p = 2. We can see that SGD trades stability for faster speed, since it
generally thrives when far from optimum but struggles when close to optimum. This is considered as the
rule of thumb for stochastic method.

9.4 Step Sizes

It is standard to use diminishing step sizes in SGD (e.g., tk = 1/k). The short (and intuitive) explanation
for why we do not use fixed step sizes is the following. Suppose we take cyclic rule for simplicity. We have
tk = t for m updates in a row, so for SGD we get

x(k+m) = x(k) − t
m∑
i=1

∇fi(x(k+i−1))

Meanwhile, for full gradient method with step size mt, we have

x(k+1) = x(k) − t
m∑
i=1

∇fi(x(k))

Lecture 9: September 25 9-3

Figure 9.1: Comparison between batch methods and stochastic methods. The blue dots represent the batch
steps, which takes O(np) running time. The red dots represent the stochastic steps, which takes O(p) running
time

Consider the error between x(k+m) and xk+1:

x(k+m) − xk+1 = t

m∑
i=1

[
∇fi(x(k+i−1))−∇fi(x(k))

]
If we keep t constant, this difference will in general not go to zero. Hence, usually using a diminishing step
sizes will make stochastic update a more accurate estimate of the full gradient estimate.

9.5 Convergence rate of SGD

We have learnt that for a convex function f , gradient descent with diminishing step sizes satisfies

f(x(k))− f∗ = O(1/
√
k),

and in addition, if f is differentiable and ∇f is Liptchitz continuous, with suitable sizes we get

f(x(k))− f∗ = O(1/k).

Now, as for SGD, as shown by Nemirovski et al. [1], though we have that for convex function f , with
diminishing step sizes, it satisfies

E[f(x(k))]− f∗ = O(1/
√
k),

and the bound does not improve when we further assuming ∇f is Liptchitz continuous. In fact, the dis-
crepency can be worse for f being strongly convex and ∇f is Liptchitz continuous. Specifically, full gradient
decent satisfies

f(x(k))− f∗ = O(γk),

9-4 Lecture 9: September 25

where 0 < γ < 1 is the condition number; while SGD gives us

E[f(x(k))]− f∗ = O(1/k).

Therefore, stochastic methods do not enjoy the linear convergence rate of gradient descent under strong
convexity.

9.6 Mini-batch SGD

Previous section says that SGD do not enjoy the linear convergence rate of full gradient descent even with the
assumption of strong convexity. However, this is usually not a real concern in machine learning community,
since people often want better performance on the samples outside the training sets, which makes fully
optimization of the objectives unnecessary, therefore we can always stop early on an “okay” solution. To
people actually want the optimization, we show a common way to improve the convergence rate of SGD,
which the Mini-batch SGD.

Mini-batch SGD For the optimization problem described early, during the k-th update, we choose a
random subset Ik ⊂ {1, . . . ,m}, where |Ik| = b << m, and use the following update rule:

x(k) = x(k−1) − tk
b

∑
i∈Ik

∇fi(x(k−1)).

As before, the gradient estimate is unbiased as

E[
1

b

∑
i∈Ik

∇fi(x(k−1))] = ∇f(x),

and its variance is reduced by a factor 1/b, though at the cost of b times more expensive running time at
each iteration. Therefore, one may regard Mini-batch SGD as a compromise between SGD and full gradient
descent.

Dekel et al. [2] had shown that, under the Lipschitz gradient, the convergence rate for Mini-batch becomes
O(
√
b/k + b/k). Though it is not convincing to use Mini-batch SGD from the theory aspect, Mini-batch

SGD turns out performing not too bad in practice, as shown in the following example.

Example Consider the regularized version of logistic regression in Rp:

min
β∈Rp

f(β), where f =
1

n

n∑
i=1

fi, and fi(β) = −yixTi β + log (1 + exp (xTi β)) +
λ

2
||β||22.

The full gradient computation is ∇f(β) = 1
n

∑n
i=1(yi − pi(β))xi + λβ, where pi(β) = exp (xTi β)/(1 +

exp (xTi β)). Then, as for the time cost during each iteration, denote p as the time to compute the the
full gradient update costs O(np), and the mini-batch update with batch size b costs O(bp), and the SGD
update costs O(p). 9.2 shows the comparison between full gradient descent, mini-batch, and SGD, in terms
of convergence rate between, where n = 104, p = 20, and the step size is fixed.

Lecture 9: September 25 9-5

(a) (b)

(c)

Figure 9.2: Comparison of convergence rate between full gradient descent, mini-batch, and SGD. Figure (a)
shows that mini-batch does help in terms of per iteration performance; Figure (b) is shows that mini-batch
usually do not give much improvement in terms of total cost (where flop count equals iteration index times
time cost each iteration); Figure (c) shows that Mini-batch SGD does not really help in terms of optimality
(where the y axis is the suboptimiality gap on a log scale).

9.7 Remark

As we have discussed, SGD can be very effective in terms of resources (per iteration cost, memory), and for
this reason it is still the standard for solving large problems. However SGD is slow to converge, and does
not benefit from strong convexity unlike full gradient descent. Mini-batch SGD can be an approach to trade
off effectiveness and convergence rate: it is not that beneficial in terms of flops, but it can still be useful in
practice in settings where the cost of computation over a batch can be brought closer to the cost for a point.
Still, while mini-batches help reducing the variance, they do not necessarily lead to faster convergence in the

9-6 Lecture 9: September 25

theoretical domain.

Due to these properties, it was thought for a while that SGD would not be commonly useful. Nemirovski
et al. [1] and others had established lower bounds indicating that slow convergence for strongly convex
functions was inevitable. It was recognized very recently that these lower bounds (which were established
for a more general stochastic problem) do not apply to finite sums, and with the new wave of variance
reduction methods, it was shown that we can modify SGD to converge much faster for finite sums.

9.8 SGD in Large ML

In many machine learning problems, we care more about the overall error instead of optimization error.
When the optimization error is lower than a certain threshold, it is not the dominant term of the overall risk
any more and we do not need to optimize to really high accuracy.

Thus in SGD, fixed step sizes are commonly used instead of diminishing. Someone may wonder how to
choose step size t. A trick is to do tuning with different step sizes over a small fraction of training data,
which is shown in Bottou [3].

Variants: Adagrad, Adam, AdaMax, SVRG, SAG, SAGA, ...

9.9 Early stopping

Suppose our data is (xi, yi) ∈ Rp × {0, 1}, i = 1, ..., n, where p is large.

It turns out that solve a `2 regularized logistic regression:

min
β∈Rp

1

n

n∑
i=1

(−yixTi β + log(1 + ex
T
i β)) s.t. ‖β‖2 ≤ t,

is similar to running gradient descent on the unregularized problem:

min
β∈Rp

1

n

n∑
i=1

(−yixTi β + log(1 + ex
T
i β))

and stop early. By ”early”, it means to stop really early instead of stopping when we are bouncing around
the minima.

More formally, early stopping is:

• Start at β(0) = 0, could be seen as solution to regularized problem at t = 0

• Perform GD:

β(k) = β(k−1) − ε · 1

n

n∑
i=1

(yi − pi(β(k−1)))xi, k = 1, 2, 3, ... ε is a very small constant

Lecture 9: September 25 9-7

• Treat β(k) as an approximate solution to regulartized problem with t = ‖β(k)‖2

With early stopping, it is both more convenient and much more efficient than using explicit regularization.
Because in this way, it does not require running with different parameter t, just running gradient descent.
And it turns out when we plot gradient descent iterates, it resembles the solution path of the `2 regularized
problem for varying t!

Figure 9.3: Logistic example with p = 8, solution path and grad descent path

What’s the connection? The reason for such coincidence is remained to be explored more. However,
intuitively, we can view it from the steepest descent view of gradient descent.

Let ‖ · ‖ and ‖ · ‖∗ be dual norms (e.g. `p and `q norms with 1
p + 1

q = 1)

Steepest descent updates are x+ = x+ t ·∆x, where

∆x = ‖∇f(x)‖∗ · u
u = argmin

‖v‖≤1
∇f(x)T v

If p = 2, then ∆x is exactly −∇f(x) and this is just gradient descent. Thus at each iteration, gradient
descent moves in a direction that balances decreasing f and increasing the `2 norm, which is the same
as in the regularized problem.

9-8 Lecture 9: September 25

References

[1] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–1609, 2009.

[2] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.

[3] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages 421–436.
Springer, 2012.

	Motivation
	Choosing Index ik
	Example: Stochastic Logistic Regression
	Step Sizes
	Convergence rate of SGD
	Mini-batch SGD
	Remark
	SGD in Large ML
	Early stopping

