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6.1 Convergence Analysis

Assume f is convex and differentiable, dom(f) = Rn and ∇f is Lipschitz continuous with constant L > 0,
for any x, y:

||∇f(x)−∇f(y)||2 ≤ L||x− y||2 (6.1)

If f is twice differentiable:

∇2f(x) � LI (6.2)

Theorem 6.1 Gradient descent with fixed step size t ≤ 1
L satisfies:

f(x((k)))− f∗ ≤ ||x
(0) − x∗||22

2tk
(6.3)

and same result holds for backtracking, with t replaced by β
L

To find the condition on the step size, we can use the equation f(y) ≤ f(x)+∇f(x)T (y−x)+ L
2 ‖y−x‖

2
2 from

homework 1 and set y = x+ = x−∇f(x)t. Then finding the t we can take to get a decrease in the criterion
value, we get t ≤ 1/L. Gradient descent has convergence rate of O( 1

k ), which means it finds ε-suboptimal
point in O( 1

ε ) iterations.

6.2 Analysis for strong convexity

Note that f is strongly convex means f(x) − m
2 ||x||

2
2 is convex for some constant m > 0. This impies that

for a strongly convex function, its curvature is lower bounded by the curvature of the quadratic. If f is twice
differentiable. ∇2f(x) � mI

Assuming Lipschitz gradient and strong convexity:

Theorem 6.2 Gradient descent with fixed step size t ≤ 2
m+L or with backtracking line search satisfies:

f(x((k)))− f∗ ≤ γkL
2
||x(0) − x∗||22 (6.4)
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where 0 < γ < 1

• Gradient descent with strong convexity has convergence rate ofO(γk), which means it finds ε-suboptimal
point in O(log( 1

ε )) iterations.

• This is called linear convergence as ||x(k)−x∗||2
||x(k−1)−x∗||2

≤ C < 1

[ASIDE] One of the other reasons some people may call this is linear convergence is because the plot
of objective versus iteration curve looks linear on semi-log scale. However if p = 2 in ||x(k−1) − x∗||p2
in the equation above, it would be called quadratic convergence and so on.

• Important note: γ = O(1 − m
L ), thus the convergence rate is O( Lm log( 1

ε )). This means that higher

condition number L
m results in slower convergence rate. This is due to the Hessian being ellipsoidal

and not spherical, so its optimisation is slow.

A look at the conditions for f(β) = 1
2 ||y −Xβ||

2
2

• Lipschitz continuity of ∇f :

– ∇2f(x) � LI
– As ∇2f(β) = XTX,L = λmax(X

TX)

• Strong convexity of f :

– ∇2f(x) � mI
– As ∇2f(β) = XTX,m = λmin(X

TX)

– If X is wide (X is n× p with p > n), λmin(X
TX) = 0 and f cannot be strongly convex

– Even if σmin(X) > 0, we can have large L
m = λmax(X

TX)
λmin(XTX)

∗ If there are correlated features, L/m increases which leads to slow convergence

∗ If the features are orthogonal, L/m = 1 which leads to fast convergence

Claim. Gradient Descent always finds regularised solution to the under-parametrised problem.

Consider the least squares loss f(β) = 1
2‖y −Xβ‖

2
2. The gradient descent update would be β(k) = β(k−1) +

tXT (y−Xβ(k−1)). Suppose p > n, Xβ = y has infinitely many solutions in β̄ + null(X). If we set β(0) = 0,
then the solution β(k) converges to argmin{‖β‖2 : Xβ = y} as k tends to ∞. The reason for this is that
since we started in the row space of X, we will end in the row space of X.

6.3 Practicalities

Stopping rule: stop when ||∇f(x)||2 is small

• ∇f(x∗) = 0 at solution x∗

• If f is strongly convex with m, ||∇f(x)||2 ≤
√

2mε⇒ f(x)− f∗ ≤ ε

Pros and Cons of gradient descent:
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• Pros:

– Simple idea, and each iteration is cheap (usually)

– Fast for well-conditioned, strongly convex problems

• Cons:

– Can often be slow, because many interesting problems are not strongly convex or well-conditioned

– Cannot handle nondifferentiable functions

6.4 Nesterov acceleration

Gradient descent has O( 1
ε ) convergence rate over problem class of convex, differentiable functions with

Lipschitz gradients.

First-order method: updates x(k) iteratively

x(0) + span{∇f(x(0)),∇f(x(1)), ...,∇f(x(k−1))} (6.5)

Theorem 6.3 (Nesterov) For any k ≤ n−1
2 and any starting point x(0), there is a function f in the

problem class such that any first-order method satisfies:

f(x(k))− f∗ ≥ 3L||x(0) − x∗||22
32(k + 1)2

(6.6)

Can attain convergence rate O( 1
k2 ). Gradient Descent is a type of first-order method, which can be proved

using induction. Since Gradient Descent converges at O( 1
ε ), Theorem 6.3 shows that there are more optimal

methods than Gradient Descent, which converge at a rate of O( 1√
ε
).

6.5 Analysis for nonconvex case

Assume f is differentiable with Lipschitz gradient, nonconvex. Instead of optimality, we settle for a ε-
substationary point solution, ||∇f(x)||2 ≤ ε

Theorem 6.4 Gradient descent with fixed step size t ≤ 1
L satisfies:

mini=0,...,k||∇f(x(i))||2 ≤

√
2(f(x(0))− f∗)

t(k + 1)
(6.7)

• The gradient descent has convergence rate O( 1√
k

), or O( 1
ε2 )

• This rate cannot be improved (over class of differentiable functions with Lipschitz gradients) by any
deterministic algorithm.
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6.6 Introduction to subgradients

For a convex and differentiable functions f , the first order criterion states that for all x, y:

f(y) ≥ f(x) +∇f(x)T (y − x) (6.8)

Subgradients are motivated for the case when f is non-differentiable, and are used to define the tighest affine
function that underestimates f .

Definition 6.5 (Subgradient) g is a subgradient of a convex function f at x if

f(y) ≥ f(x) + gT (y − x) ∀y

Some properties of subgradients:

• Always exists in the relative interior of the dom(f).

• If f is indeed differentiable at x, then g = ∇f(x) uniquely.

• This definition is universal - can hold for non-convex functions too. However, it could be possible that
g doesn’t exist.

6.6.1 Examples

The following examples elucidate the differences about subgradients at points of differentiability and non-
differentiability.

• Consider f : R→ R defined as f(x) = |x|. It has one point of non-differentiability, namely at x = 0.

– For x 6= 0, the subgradient is unique and is g = sign(x)

– For x = 0, the subgradient is any element of [−1, 1], which can be arrived at by using the definition.

.
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• Consider f : Rn → R defined as f(x) = ||x||2. It has one point of non-differentiabilty, namely at x = 0.

– For x 6= 0, the subgradient is unique and is g = x
||x||2

– For x = 0, the subgradient is any element of {v : ||v||2 ≤ 1}, which can be arrived at by using the
definition.

• Consider f : Rn → R defined as f(x) = ||x||1. It has more than one point of non-differentiabilty that
is when any one of the components equal 0.

– For xi 6= 0, the ith component of the subgradient is unique and is gi = sign(xi)

– For xi = 0, the ith subgradient is any element of [−1, 1].

Note that this coincides with the first example when n = 1.

• Consider f : Rn → R defined as f(x) = max{f1(x), f2(x)} where f1, f2 : Rn → R and are convex and
differentiable.
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– If f(x) = f1(x) i.e., f1(x) > f2(x), then g is unique and is given by ∇f1(x).

– If f(x) = f2(x) i.e., f1(x) < f2(x), then g is unique and is given by ∇f2(x).

– If f1(x) = f2(x), then g is any point on the line segment between ∇f1(x) and ∇f2(x).

6.7 Subdifferentials

Definition 6.6 (Subdifferential) The subdifferential of a convex function f at x ∈ dom(f) is the collection
of all subgradients of f at x

∂f(x) = {g : f(y) ≥ f(x) + gT (y − x)}

Some properties of the subdifferential:

• For convex f , ∂f(x) 6= ∅. However, for concave f , ∂f(x) = ∅.

• ∂f(x) is closed and convex for any f .

• Since the subgradient is unique at points of differentiability, ∂f(x) = {∇f(x)} when f is differentiable
at x.

• ∂f(x) is singleton, then f is differentiable at x and ∇f(x) is that only element of ∂f(x).

Lemma 6.7 (Connection to Convex Geometry) Let C ⊆ Rn be a convex set. Consider IC : Rn → R

such that IC(x) =

{
0 if x ∈ C
∞ if x /∈ C

. Then ∂IC(x) = NC(x), where NC(x) is the normal cone of C at x.

Proof: g is a subgradient of IC at x iff it satisfies the subgradient inequality.

IC(y) ≥ IC(x) + gT (y − x)

If y /∈ C, then IC(y) =∞ and the inequality holds trivially. Otherwise if y ∈ C, IC(y) = 0 and the inequality
is equivalent to gT (y − x) ≤ 0.
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6.8 Subgradient calculus

Some basic rules for convex functions and their subgradients / subdifferentials:

• Positive scaling: ∂(αf) = α · ∂f if α > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: Let g(x) = f(Ax+ b), then ∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: Let f(x) = max
i∈[1,m]

fi(x). Then:

∂f(x) = conv

 ⋃
i:fi(x)=f(x)

∂fi(x)


This is a generalization of the example given earlier.

• Norms: To each norm ||.||, there is a dual norm ||.||∗ such that:

||x|| = max
||z||∗≤1

zTx

If f(x) = ||x||p, consider q satisfying the relation 1
p + 1

q = 1, then:

||x||p = max
||z||q≤1

zTx

When p = 2, q = 2. Also, ∂f(x) = argmax
||z||q≤1

zTx.


