10-725/36-725: Convex Optimization	Fall 2019
Lecture 6: September 16	
Lecturer: Ryan Tibshirani Scribes	: Vishwak Srinivasan, Ziyang Wang, Arnav Choudhry

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

6.1 Convergence Analysis

Assume f is convex and differentiable, dom $(f) = \mathbb{R}^n$ and ∇f is Lipschitz continuous with constant L > 0, for any x, y:

$$||\nabla f(x) - \nabla f(y)||_2 \le L||x - y||_2 \tag{6.1}$$

If f is twice differentiable:

$$\nabla^2 f(x) \preceq LI \tag{6.2}$$

Theorem 6.1 Gradient descent with fixed step size $t \leq \frac{1}{L}$ satisfies:

$$f(x^{((k))}) - f^* \le \frac{||x^{(0)} - x^*||_2^2}{2tk}$$
(6.3)

and same result holds for backtracking, with t replaced by $\frac{\beta}{L}$

To find the condition on the step size, we can use the equation $f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} ||y-x||_2^2$ from homework 1 and set $y = x^+ = x - \nabla f(x)t$. Then finding the t we can take to get a decrease in the criterion value, we get $t \leq 1/L$. Gradient descent has convergence rate of $O(\frac{1}{k})$, which means it finds ϵ -suboptimal point in $O(\frac{1}{\epsilon})$ iterations.

6.2 Analysis for strong convexity

Note that f is strongly convex means $f(x) - \frac{m}{2}||x||_2^2$ is convex for some constant m > 0. This implies that for a strongly convex function, its curvature is lower bounded by the curvature of the quadratic. If f is twice differentiable. $\nabla^2 f(x) \succeq mI$

Assuming Lipschitz gradient and strong convexity:

Theorem 6.2 Gradient descent with fixed step size $t \leq \frac{2}{m+L}$ or with backtracking line search satisfies:

$$f(x^{((k))}) - f^* \le \gamma^k \frac{L}{2} ||x^{(0)} - x^*||_2^2$$
(6.4)

where $0 < \gamma < 1$

- Gradient descent with strong convexity has convergence rate of $O(\gamma^k)$, which means it finds ϵ -suboptimal point in $O(\log(\frac{1}{\epsilon}))$ iterations.
- This is called linear convergence as $\frac{||x^{(k)}-x^*||_2}{||x^{(k-1)}-x^*||_2} \leq C < 1$

[ASIDE] One of the other reasons some people may call this is linear convergence is because the plot of objective versus iteration curve looks linear on semi-log scale. However if p = 2 in $||x^{(k-1)} - x^*||_2^p$ in the equation above, it would be called quadratic convergence and so on.

• Important note: $\gamma = O(1 - \frac{m}{L})$, thus the convergence rate is $O(\frac{L}{m}log(\frac{1}{\epsilon}))$. This means that higher condition number $\frac{L}{m}$ results in slower convergence rate. This is due to the Hessian being ellipsoidal and not spherical, so its optimisation is slow.

A look at the conditions for $f(\beta) = \frac{1}{2}||y - X\beta||_2^2$

- Lipschitz continuity of ∇f :
 - $-\nabla^2 f(x) \preceq LI$
 - As $\nabla^2 f(\beta) = X^T X, L = \lambda_{\max}(X^T X)$
- Strong convexity of f:
 - $-\nabla^2 f(x) \succeq mI$
 - As $\nabla^2 f(\beta) = X^T X, m = \lambda_{\min}(X^T X)$
 - If X is wide (X is $n \times p$ with p > n), $\lambda_{\min}(X^T X) = 0$ and f cannot be strongly convex
 - Even if $\sigma_{\min}(X) > 0$, we can have large $\frac{L}{m} = \frac{\lambda_{\max}(X^T X)}{\lambda_{\min}(X^T X)}$
 - * If there are correlated features, L/m increases which leads to slow convergence
 - * If the features are orthogonal, L/m = 1 which leads to fast convergence

Claim. Gradient Descent always finds regularised solution to the under-parametrised problem.

Consider the least squares loss $f(\beta) = \frac{1}{2} ||y - X\beta||_2^2$. The gradient descent update would be $\beta^{(k)} = \beta^{(k-1)} + tX^T(y - X\beta^{(k-1)})$. Suppose p > n, $X\beta = y$ has infinitely many solutions in $\bar{\beta} + \text{null}(X)$. If we set $\beta^{(0)} = 0$, then the solution $\beta^{(k)}$ converges to $\operatorname{argmin}\{||\beta||_2 : X\beta = y\}$ as k tends to ∞ . The reason for this is that since we started in the row space of X, we will end in the row space of X.

6.3 Practicalities

Stopping rule: stop when $||\nabla f(x)||_2$ is small

- $\nabla f(x^*) = 0$ at solution x^*
- If f is strongly convex with m, $||\nabla f(x)||_2 \le \sqrt{2m\epsilon} \Rightarrow f(x) f^* \le \epsilon$

Pros and Cons of gradient descent:

- Pros:
 - Simple idea, and each iteration is cheap (usually)
 - Fast for well-conditioned, strongly convex problems
- Cons:
 - Can often be slow, because many interesting problems are not strongly convex or well-conditioned
 - Cannot handle nondifferentiable functions

6.4 Nesterov acceleration

Gradient descent has $O(\frac{1}{\epsilon})$ convergence rate over problem class of convex, differentiable functions with Lipschitz gradients.

First-order method: updates $x^{(k)}$ iteratively

$$x^{(0)} + \operatorname{span}\{\nabla f(x^{(0)}), \nabla f(x^{(1)}), ..., \nabla f(x^{(k-1)})\}$$
(6.5)

Theorem 6.3 (Nesterov) For any $k \leq \frac{n-1}{2}$ and any starting point $x^{(0)}$, there is a function f in the problem class such that any first-order method satisfies:

$$f(x^{(k)}) - f^* \ge \frac{3L||x^{(0)} - x^*||_2^2}{32(k+1)^2}$$
(6.6)

Can attain convergence rate $O(\frac{1}{k^2})$. Gradient Descent is a type of first-order method, which can be proved using induction. Since Gradient Descent converges at $O(\frac{1}{\epsilon})$, Theorem 6.3 shows that there are more optimal methods than Gradient Descent, which converge at a rate of $O(\frac{1}{\sqrt{\epsilon}})$.

6.5 Analysis for nonconvex case

Assume f is differentiable with Lipschitz gradient, nonconvex. Instead of optimality, we settle for a ϵ -substationary point solution, $||\nabla f(x)||_2 \leq \epsilon$

Theorem 6.4 Gradient descent with fixed step size $t \leq \frac{1}{L}$ satisfies:

$$\min_{i=0,\dots,k} ||\nabla f(x^{(i)})||_2 \le \sqrt{\frac{2(f(x^{(0)}) - f^*)}{t(k+1)}}$$
(6.7)

- The gradient descent has convergence rate $O(\frac{1}{\sqrt{k}})$, or $O(\frac{1}{\epsilon^2})$
- This rate cannot be improved (over class of differentiable functions with Lipschitz gradients) by any deterministic algorithm.

6.6 Introduction to subgradients

For a convex and differentiable functions f, the first order criterion states that for all x, y:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \tag{6.8}$$

Subgradients are motivated for the case when f is non-differentiable, and are used to define the tighest affine function that underestimates f.

Definition 6.5 (Subgradient) g is a subgradient of a convex function f at x if

$$f(y) \ge f(x) + g^T(y - x) \qquad \forall y$$

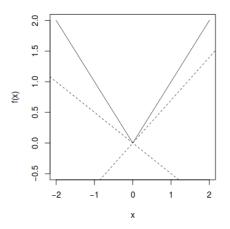
Some properties of subgradients:

- Always exists in the relative interior of the dom(f).
- If f is indeed differentiable at x, then $g = \nabla f(x)$ uniquely.
- This definition is universal can hold for non-convex functions too. However, it could be possible that g doesn't exist.

6.6.1 Examples

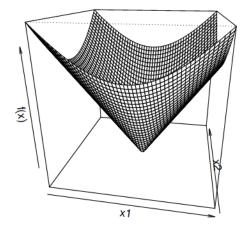
The following examples elucidate the differences about subgradients at points of differentiability and nondifferentiability.

• Consider $f: \mathbb{R} \to \mathbb{R}$ defined as f(x) = |x|. It has one point of non-differentiability, namely at x = 0.

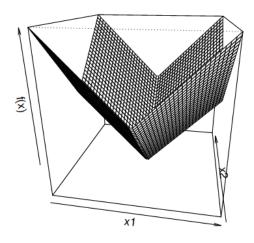


- For $x \neq 0$, the subgradient is unique and is $g = \operatorname{sign}(x)$
- For x = 0, the subgradient is any element of [-1, 1], which can be arrived at by using the definition.

• Consider $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f(x) = ||x||_2$. It has one point of non-differentiability, namely at $x = \mathbf{0}$.



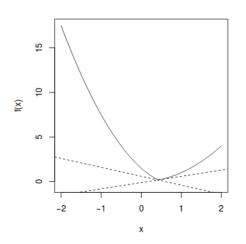
- For $x \neq \mathbf{0}$, the subgradient is unique and is $g = \frac{x}{||x||_2}$
- For x = 0, the subgradient is any element of $\{v : ||v||_2 \le 1\}$, which can be arrived at by using the definition.
- Consider $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f(x) = ||x||_1$. It has more than one point of non-differentiability that is when any one of the components equal 0.



- For $x_i \neq 0$, the *i*th component of the subgradient is unique and is $g_i = \text{sign}(x_i)$
- For $x_i = 0$, the i^{th} subgradient is any element of [-1, 1].

Note that this coincides with the first example when n = 1.

• Consider $f : \mathbb{R}^n \to \mathbb{R}$ defined as $f(x) = \max\{f_1(x), f_2(x)\}$ where $f_1, f_2 : \mathbb{R}^n \to \mathbb{R}$ and are convex and differentiable.



- If $f(x) = f_1(x)$ i.e., $f_1(x) > f_2(x)$, then g is unique and is given by $\nabla f_1(x)$.
- If $f(x) = f_2(x)$ i.e., $f_1(x) < f_2(x)$, then g is unique and is given by $\nabla f_2(x)$.
- If $f_1(x) = f_2(x)$, then g is any point on the line segment between $\nabla f_1(x)$ and $\nabla f_2(x)$.

6.7 Subdifferentials

Definition 6.6 (Subdifferential) The subdifferential of a convex function f at $x \in dom(f)$ is the collection of all subgradients of f at x

$$\partial f(x) = \{g : f(y) \ge f(x) + g^T(y - x)\}$$

Some properties of the subdifferential:

- For convex f, $\partial f(x) \neq \emptyset$. However, for concave f, $\partial f(x) = \emptyset$.
- $\partial f(x)$ is closed and convex for any f.
- Since the subgradient is unique at points of differentiability, $\partial f(x) = \{\nabla f(x)\}$ when f is differentiable at x.
- $\partial f(x)$ is singleton, then f is differentiable at x and $\nabla f(x)$ is that only element of $\partial f(x)$.

Lemma 6.7 (Connection to Convex Geometry) Let $C \subseteq \mathbb{R}^n$ be a convex set. Consider $I_C : \mathbb{R}^n \to \mathbb{R}$ such that $I_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{if } x \notin C \end{cases}$. Then $\partial I_C(x) = \mathcal{N}_C(x)$, where $\mathcal{N}_C(x)$ is the normal cone of C at x.

Proof: g is a subgradient of I_C at x iff it satisfies the subgradient inequality.

$$I_C(y) \ge I_C(x) + g^T(y - x)$$

If $y \notin C$, then $I_C(y) = \infty$ and the inequality holds trivially. Otherwise if $y \in C$, $I_C(y) = 0$ and the inequality is equivalent to $g^T(y-x) \leq 0$.

6.8 Subgradient calculus

Some basic rules for convex functions and their subgradients / subdifferentials:

- Positive scaling: $\partial(\alpha f) = \alpha \cdot \partial f$ if $\alpha > 0$
- Addition: $\partial(f_1 + f_2) = \partial f_1 + \partial f_2$
- Affine composition: Let g(x) = f(Ax + b), then $\partial g(x) = A^T \partial f(Ax + b)$
- Finite pointwise maximum: Let $f(x) = \max_{i \in [1,m]} f_i(x)$. Then:

$$\partial f(x) = \operatorname{conv}\left(\bigcup_{i:f_i(x)=f(x)} \partial f_i(x)\right)$$

This is a generalization of the example given earlier.

• Norms: To each norm ||.||, there is a **dual norm** $||.||_*$ such that:

$$||x|| = \max_{||z||_* \le 1} z^T x$$

If $f(x) = ||x||_p$, consider q satisfying the relation $\frac{1}{p} + \frac{1}{q} = 1$, then:

$$||x||_p = \max_{||z||_q \le 1} z^T x$$

When p = 2, q = 2. Also, $\partial f(x) = \underset{||z||_q \leq 1}{\operatorname{argmax}} z^T x$.