
Data Mining: 36-462/36-662

Homework 1

Due Tuesday February 5 2013
(at the beginning of lecture)

Append your R code to the end of your homework. In your solutions, you should just
present your R output (e.g., numbers, table, figures) or snippets of R code as you deem it
appropriate. Make sure to present your results (i.e., your R ouput) in a clear and readable
fashion. Careless or confusing presentations will be penalized.

Problem 1

Download the file “hw1prob1.Rdata” from the course website, and load it into your R session
using load("hw1prob1.Rdata"). Now you’ll have a document-term matrix dtm loaded into
memory, of dimension 8 documents × 6820 words. These are the 8 wikipedia documents
that were used in lecture 2—4 of them on the teenage mutant ninja turtles and 4 of them on
the artists of the same name. If you’re curious, type rownames(dtm) and colnames(dtm)

(don’t worry if the second command gives you a warning).

(a) First normalize the documents by their total word count, and then apply IDF weighting
to the words. Save this matrix as dtm1. Now reverse the order: first apply IDF weighting
to the words, then normalize the documents by their total word count, and save this matrix
as dtm2. Are dtm1 and dtm2 different? Explain why you think they should or shouldn’t be
different.

(Note: your normalization and IDF weighting must be computed manually, i.e., you can’t
use functions in the tm package.)

(b) We’re going to forgo IDF weighting with such a small collection (8 documents). Nor-
malize the documents by their total word count, and call this matrix dtm3. According to
this document-term matrix, which document is closest (measured in Euclidean distance) to
the document named “tmnt mike”?

(c) Sticking with the normalized matrix dtm3, compute the distance between each pair of
documents using the function dist. Now run hierarchical agglomerative clustering, both
with single linkage and complete linkage, using the function hclust. Plot the resulting
dendograms for both linkages. If you had to split the documents into 2 groups, which
linkage do you think gives a more reasonable clustering?

(d) Combine the word counts from all of the documents into one cumulative word count
vector. I.e., for each word, you should now have a count for the number of times it appears

1



across all 8 documents. List the top 20 most common words, and how many times they
appear. What percentage of total occurrences do these top 20 words represent? How many
of the top words account for 50% of total occurrences?

(e) Zipf’s law states that, given a collection of documents like the one we have, the number
times a word appears is inversely proportional to its rank (the words being ranked by how
common they are). In other words, the second most common word appears half as often
as the most common word, the third most common word appears a third as often as the
most common word, etc. This “law” is one that has been empirically confirmed, and aside
from word counts, these kind of “power” laws have also been observed in a wide variety of
different problems.1 Does our collection of 8 wikipedia articles appear to follow Zipf’s law?
Can you give a plot to provide visual evidence for or against this claim?

(Hint: for your plot, think about translating the relationship expressed by Zipf’s law into
a mathematical one, between the number of occurrences y and the rank x of a word. Now
take logs.)

Problem 2

Compute the PageRank vector for the following graph, with d = 0.85. Repeat the calcula-
tion for d = 1 (BrokenRank). What’s the difference? Explain.

●

● ●

●

●

●

●

●

●

●

1

2
3

4

5

6

7

8

9

10

You should be computing PageRank by explicitly constructing A and finding its leading
eigenvector (i.e., you can’t use the page.rank function in the igraph package).

(Hint: you don’t have to compute the leading eigenvector by repeatedly multiplying by A,
although you can if you really want to. Instead, use the eigen function in R.)

1Professor Shalizi would have something to say about this: http://arxiv.org/pdf/0706.1062v2.pdf.

2



Problem 3

You’re going to prove some claims from lecture 4.

(a) Let X1, . . . Xn ∈ Rp, and C be a function assigning points to clusters 1, . . .K. Let nk

be the number of points assigned to the kth cluster. Prove that the within-cluster scatter
here is exactly the within-cluster variation:

1

2

K∑
k=1

1

nk

∑
C(i)=k

∑
C(j)=k

‖Xi −Xj‖22 =

K∑
k=1

∑
C(i)=k

‖Xi − X̄k‖22,

where X̄k is the average of the points in group k, i.e., X̄k = 1
nk

∑
C(i)=k Xi (here I mean

vector addition).

(Hint 1: don’t let the vectors and norms scare you! Prove the result for scalars first, and
then see what you can do.)

(Hint 2: don’t let the multiple sums above scare you! Get rid of the outer sum taken over
k = 1, . . .K, and consider a fixed group k.)

(b) Let Z1, . . . Zm ∈ Rp. Prove that the quantity

m∑
i=1

‖Zj − c‖22

is minimized by taking c = Z̄, the average of the points, i.e., Z̄ = 1
m

∑m
i=1 Zi (again this is

vector addition).

(c) Let Wt denote the within-cluster variation at the start of iteration t of K-means clus-
tering. Prove that for any t, Wt+1 ≤Wt.

Problem 4

In this problem you’re going to investigate the invariance of agglomerative clustering using
either single or complete linkage under a monotone transformation of the distances.

Download the file “hw1prob3.Rdata” from the course website and load it into your R
session using load("hw1prob3.Rdata"). Now you’ll have two objects loaded into memory:

• x, a 40× 2 matrix containing 40 observations along its rows;

• d, the pairwise Euclidean distances.

(a) Run hierarchical agglomerative clustering with single linkage, using the function hclust.
Cut the tree at K = 4 clusters using the function cutree, which returns a vector of cluster
assignments. Plot the points in x with different colors (or different pch values) indicating
the cluster assignments. Also plot the dendogram.

(Note: if you want your dendograms to look like the ones in lecture, choose a really small
negative value for the hang parameter, e.g., hang=-1e-10).

3



(b) Repeat part (a) for complete linkage.

(c) Repeat parts (a) and (b), but passing d^2 to the function hclust instead of d. Did the
clustering assignments change? Did the dendograms change?

(d) Prove that for single linkage, running agglomerative clustering with dissimilarities dij
and running it again with dissimilarities h(dij) produces the same sequence of clustering
assignments, provided that h is a monotone increasing function. Recall that a monotone
increasing function h is one such that x ≤ x′ implies h(x) ≤ h(x′). Prove the same thing
for complete linkage.

(e) Run agglomerative clustering with average linkage on each of d and d^2. Cut both
trees at K = 4. Are the clustering assignments the same? How about for K = 3? (You
should produce plots of x, like the ones you made above, with different colors or pch values
in order to display the clustering results.)

Bonus problem

Write your own K-means function in R. It should have the following form:

my.kmeans = function(x, centers, max.iter=20) { ... }

where it takes the arguments:

• x. an n× p matrix with the n observations along its rows;

• centers, a K × p matrix giving the K initial guesses for the cluster centers;

• max.iter, a number (defaults to 20) giving the maximum number of iterations before
quitting.

It should return:

• centers, a K × p matrix containing the K final cluster centers;

• cluster, a vector of length n indicating the cluster assignment for each point;

• num.iter, the number of iterations taken by the algorithm.

As a check, compare your algorithm my.kmeans to the standard kmeans function in R, by
passing both functions the same data points and the same initial centers. (Remember to
use algorithm="Lloyd" in kmeans.)

4


