
Data Mining: 36-462/36-662

Homework 3

Due Thursday March 7 2013
(at the beginning of lecture)

Append your R code to the end of your homework. In your solutions, you should just
present your R output (e.g., numbers, table, figures) or snippets of R code as you deem it
appropriate. Make sure to present your results (i.e., your R ouput) in a clear and readable
fashion. Careless or confusing presentations will be penalized.

Problem 1

Using R, create an example of 100 points in 2 dimensions that obey a 1-dimensional struc-
ture, i.e., the points lie along a smooth curve. Color the points by their intrinsic order along
this curve, e.g., with colors from rainbow(100).

Your example should be a situation in which regular principal component analysis will
fail—i.e., the first principal component score fails to properly unravel the points according
to their order on the curve. (The coloring is used to visualize this ordering.)

By passing the appropriate distance matrix to multidimensional scaling (not just Eu-
clidean distances! this will just give us back principal component analysis), show that this
method can produce a 1-dimensional representation of your curve, such that the points are
in the correct order. (Again, this ordering is demonsrated by the coloring).

Your write up should include, in addition to a short exlanation of what you did and
why it worked, 3 plots: the original 2-dimensional data, the first principal component score,
and the 1-dimensional representation returned by multidimensional scaling (applied to your
custom distances).

(Hint: you have total control over your example, so create an example where it is obvious
to you what the “right” distance metric is to pass to multidimensional scaling.)

Problem 2

Given X,Y ∈ R, suppose that Z = (X,Y ) ∈ R2 has a bivariate normal distribution,
Z ∼ N(µ,Σ), where µ ∈ R2 and Σ ∈ R2×2. The density of Z = (X,Y ) is

fX,Y (z) =
1

2π
√

det(Σ)
exp

(
− 1

2
(z − µ)TΣ−1(z − µ)

)
.

(a) Argue that we can always write

Σ =

(
σ2X ρσXσY

ρσXσY σ2Y

)
,
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where σ2X = Var(X), σ2Y = Var(Y ), and ρ = Cor(X,Y ).

(b) Express the density fX,Y at a point z = (x, y) explicitly in terms of x and y, i.e., not
involving any matrix-vector multiplications.

(Hint: for a 2× 2 matrix, you can write out its determinant and inverse explicitly.)

(c) Show that when ρ = 0, the joint density factors as fX,Y (x, y) = fX(x)fY (y) where
fX , fY are the marginal densities of X,Y , respectively, and hence X,Y are independent.

Problem 3

Download the file “smoother.R” from the course website, and load it into your R session
using source("smoother.R"). Now you should have the function smoother. This function
takes x and y as arguments, which are the vectors of independent and dependent observa-
tions, respectively. It smooths y on x and returns the vector of fitted values.

(a) You’re going to write an R function to perform the alternative conditional expectations
(ACE) algorithm. Your function should look like:

my.ace = function(x, y, tol=1e-6, maxiter=500) {

fx = x-mean(x)

fx = fx/sqrt(sum(fx^2))

gy = y

# Your code goes here, to build fx, gy, maxcor, iter

return(list(fx=fx,gy=gy,maxcor=maxcor,iter=iter))

}

The function takes arguments:

• x,y: vectors of observations, whose maximal correlation we want to compute.

• tol: if the absolute difference in the correlation of fx,gy is smaller than tol across
successive iterations, then we quit.

• maxiter: the maximum number of iterations before quitting.

The function returns a list with elements:

• fx,gy: the optimal transformations of x,y, respectively, as determined by your ACE
algorithm.

• maxcor: the maximal correlation of x,y, i.e., the correlation of fx,gy.

• iter: the number of iterations performed by your ACE algorithm.
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Remember from lecture that the functions fx,gy should be centered and scaled at each
iteration, i.e., these vectors should be centered to have mean zero and scale to have sum of
squares equal to one.

Because writing this function is the point of this part of the problem, you should give
your R code for the my.ace function as your solution (i.e., don’t just append it at the end
of your homework).

Download the file “hw3prob3.Rdata” from the course website and load it into your R session
using load("hw3prob3.Rdata"). Now you should have a list ace.data, that contains
8 elements, each of which is a data set. These are perf.lin, perf.quad, perf.cubic,
perf.circle, noisy.lin, noisy.indep, noisy.pwcubic, noisy.checker. Each of these
is in turn a list with two elements, x and y. So, e.g., the data for the perfect linear dat set
can be accessed using ace.data$perf.lin$x and ace.data$perf.lin$y.

(b) Run my.ace on each of the perfect data sets (first 4 data sets in ace.data). For each
data set, report the maximal correlation. Also for each data set, produce a figure of 4 plots
(using par(mfrow=c(2,2))), where the top left shows the data (i.e., x vs y), the top right
shows the transformed data (i.e., fx vs gy), the bottom left shows the transformation of x
(i.e., x vs fx), and the bottom right shows the transformation of y (i.e., y vs gy). Briefly
comment on the transformations for each data set. Do they make sense?

(c) Repeat (b) for the noisy data sets (last 4 data sets in ace.data). What in particular do
you notice about the transformations for the noisy.lin data set? Also, what is the reported
maximal correlation for the noisy.checker data set? Looking at the transformations from
the ACE algorithm, explain why this happened. Is this a desirable outcome?

Problem 4

In this problem you’re going to prove the Gauss-Markov theorem. Gauss apparently proved
this when we he was 18.1 You’re probably older than 18, but still, you can someday brag
to your grandkids that at a young age you proved a fairly fundamental result in statistics.

Recall that the theorem assumes that we observe a vector y ∈ Rn of observations from
the model

y = Xβ∗ + ε,

where X ∈ Rn×p is a fixed matrix of predictor variables, β∗ ∈ Rp are the true coefficients,
and ε ∈ Rn are random errors, with

E[ε] = 0, Cov(ε) = σ2I.

Given a vector a ∈ Rp, we consider linear unbiased estimates of aTβ∗. That is, we consider
estimates of the form cT y such that E[cT y] = aTβ∗. Note that the regression estimate aT β̂
is both linear and unbiased, as

aT β̂ = aT (XTX)−1XT y =
(
X(XTX)−1a

)T
y = bT y,

1Although, he proved a slightly weaker version of the result in which the errors are assumed to be normally
distributed.
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and E[aT β̂] = aTE[β̂] = aTβ∗. As our criterion we use mean squared error; for any estimate
cT y of aTβ∗, its mean squared error is

MSE(cT y) = E[(cT y − aTβ∗)2].

The Gauss-Markov theorem states that aT β̂ is the best linear unbiased estimate (BLUE)
of aTβ∗ in terms of mean squared error, that is,

MSE(aT β̂) ≤ MSE(cT y)

for any other linear unbiased estimate cT y of aTβ∗. You will prove this in several steps.

(a) Prove that E[y] = Xβ∗ and Cov(y) = σ2I.

(b) Prove that if E[cT y] = aTβ∗ holds for any vector β∗ ∈ Rp, then we must have XT c = a.

(c) Let cT y be an unbiased estimator of aTβ∗. Prove that MSE(cT y) = σ2‖c‖22, and hence

MSE(cT y) = σ2(‖c∗‖22 + ‖c− c∗‖22) ≥ σ2‖c∗‖22,

with equality if and only if c = c∗, where c∗ = Pcol(X) c, the projection of c onto the column
space of X.

(Hint: If cT y is unbiased, then MSE(cT y) = Var(cT y).)

(d) Prove that (c∗)T y = aT β̂, and conclude that MSE(aT β̂) ≤ MSE(cT y).

(Hint: Start with (c∗)T y = (c∗)T (ŷ + r) where ŷ is the linear regression fit and r = y − ŷ is
the residual. Then apply the result of part (b) to c∗.)

Bonus problem

Given x, y ∈ Rn, let A,B ∈ Rn×n denote the pairwise distances matrices:

Aij = |xi − xj |, Bij = |yi − yj |, i, j = 1, . . . n.

Also let Ã, B̃ denote the double-centered (i.e., both row- and column-centered) versions of
A,B,

Ã = (I −M)A(I −M), B̃ = (I −M)B(I −M),

where M ∈ Rn×n is the matrix of all (1/n)s. In lecture 12, we defined the sample version
of the (squared) distance covariance between x and y as

dcov2(x, y) =
1

n2

n∑
i,j=1

ÃijB̃ij ,

and we claimed that

1

n2

n∑
i,j=1

ÃijB̃ij =
1

n2

n∑
i,j=1

AijBij −
1

n

n∑
j=1

A·jB·j −
1

n

n∑
i=1

Ai·Bi· +A··B··, (1)
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where · denotes a sum over the appropriate component, i.e.,

Ai· =
n∑

j=1

Aij , A·j =
n∑

i=1

Aij , A·· =
n∑

i,j=1

Aij ,

and similarly for B. In this problem you will prove this claim.

(a) Show that
∑n

i,j=1 ÃijB̃ij = trace(ÃT B̃), where recall trace gives the sum of the diagonal
elements.

(b) Show that M and I−M are both symmetric and idempotent, i.e., MT = M , (I−M)T =
I −M , M = M2, I −M = (I −M)2.

(c) Plug in Ã = (I −M)A(I −M) and B̃ = (I −M)B(I −M) to show that

trace(ÃT B̃) = trace(ATB)− trace(MATBM)− trace(ATMMB)

+ trace(MATMMBM).

(Hint: use part (b), and the fact that you can commute the product of two matrices under
the trace operation.)

(d) Divide the result in part (c) by n2, and expand the right-hand side to prove the claim
in (1).
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