
Data Mining: 36-462/36-662

Homework 5

Due Thursday April 11 2013
(at the beginning of lecture)

Append your R code to the end of your homework. In your solutions, you should just
present your R output (e.g. numbers, table, figures) or snippets of R code as you deem it
appropriate. Make sure to present your results (i.e., your R ouput) in a clear and readable
fashion. Careless or confusing presentations will be penalized.

Problem 1

(a) Given y ∈ Rn, consider ridge regression with predictor matrix X = In×n, i.e.,

β̂ridge = argmin
β∈Rn

‖y − β‖22 + λ‖β‖22

= argmin
β∈Rn

n∑
i=1

(yi − βi)2 + λ
n∑
i=1

β2i .

Show that the solution is
β̂ridgei =

yi
1 + λ

, i = 1, . . . n.

(b) For the lasso with identity predictor matrix,

β̂lasso = argmin
β∈Rn

‖y − β‖22 + λ‖β‖1

= argmin
β∈Rn

n∑
i=1

(yi − βi)2 + λ
n∑
i=1

|βi|,

the solution (bonus problem) is

β̂lassoi =


yi + λ/2 yi < −λ/2
0 |yi| ≤ λ/2
yi − λ/2 yi > λ/2

, i = 1, . . . n.

For a fixed value of λ (e.g., you can take λ = 1), draw β̂ridgei (yi) and β̂lassoi (yi) as functions
of yi. Describe the difference between these two coefficient functions.

1



(c) Suppose that X ∈ Rn×p is orthogonal, i.e., XTX = Ip×p. Consider the ridge regression
and lasso problems:

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖22

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1.

Let Xi ∈ Rn denote the ith column of X. Show that the solutions β̂ridge, β̂lasso are given
by the same formulas as in parts (a) and (b), but with XT

i y in place of yi (and p in place
of n).

(Hint 1: if O ∈ Rn×n is an orthogonal and square matrix, recall that it preserves distances,
i.e., ‖Oz‖2 = ‖z‖2 for any z ∈ Rn.)

(Hint 2: using Hint 1 and the fact that X has orthonormal columns, show that

‖y −Xβ‖22 = ‖XT y − β‖22 + c,

where c is a constant, meaning that it doesn’t depend on β.)

(d) If X ∈ Rn×p is orthogonal, what are the linear regression coefficients β̂LS of y on X?
Given your answers for the ridge regression and lasso coefficients in part (c) (and the picture
you drew in part (b)), give a few sentences interpreting the ridge and lasso coefficients as a
functions of the linear regression coefficients.

Problem 2

Consider the linear regression of predictors y ∈ Rn on predictors X ∈ Rn×p. Let xi ∈ Rp,
i = 1, . . . n denote the predictors measurements, i.e., these are the rows of X. Recall that
the linear regression estimator is given by

f̂(xi) = xTi β̂
LS = xTi (XTX)−1XT y.

In this problem you will prove the formula

yi − f̂−i(xi) =
yi − f̂(xi)

1− Sii
, (1)

where S = X(XTX)−1XT , and f̂−i is the linear regression estimator fit to all but the ith
training pair (xi, yi). This gives us big savings when computing the leave-one-out cross-
validation error:

1

n

n∑
i=1

(
yi − f̂−i(xi)

)2
=

1

n

n∑
i=1

[
yi − f̂(xi)

1− Sii

]2
, (2)

because we don’t have to actually compute f̂−i for each i.

(a) Recall that S = X(XTX)−1XT , and let Z ∈ R(n−1)×p denote the predictor matrix X
but with its ith row removed. Argue that

Sii = xTi (XTX)−1xi and f̂−i(xi) = xTi (ZTZ)−1ZT y−i,
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where y−i ∈ Rn−1 denotes the observation vector y but with its ith component removed.
Argue also that

XTX = ZTZ + xix
T
i and XT y = ZT y−i + xiyi.

(b) For a matrix A ∈ Rk×k and vectors u, v ∈ Rk, the Sherman-Morrison update formula
gives the inverse of A+ uvT in terms of the inverse of A:

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Using this formula, prove that f̂−i(xi) can be expressed as

f̂−i(xi) =
f̂(xi)− Siiyi

1− Sii
.

Rearrange this to conclude the result in (1).

(Hint: use your results from (a), and the Sherman-Morrison formula to express (ZTZ)−1 =
(XTX − xixTi )−1 in terms of (XTX)−1.)

(c) Prove the result (1) when f̂ is the ridge regression estimator, f̂(xi) = xTi β̂
ridge, at any

arbitrary tuning parameter value λ ≥ 0.

(Hint: your proof shouldn’t be longer than a few lines! Recall the result from homework 4,
problem 2(a).)

Problem 3

Download the file “splines.Rdata” used in lecture 19, from the class website. Using the code
“19-val2.R” (also provided on the class website) as a starting point, perform leave-one-out
cross-validation for the smoothing spline estimator on the splines data, over the same range
of degrees of freedom values as those in the file (i.e., dfs = 2:30). Plot the CV error curve.
What value of degrees of freedom is selected here (by the usual rule)?

Now compute the right-hand side of the formula in (2). At each the tuning parameter
value (each value of degrees of freedom), for the diagonal elements of S, take the lev

component of the object returned by the smooth.spline function. Are these values (the
right-hand sides in (2), over the various degrees of freedom values) different from the leave-
one-out CV errors you computed above? Plot them and compare.

Problem 4

In this problem, you’ll investigate using linear discriminant analysis (LDA) to label hand-
written digits as a “0”, “1”, or “4”. Download the file “zip.014.Rdata” from the class
website and load it into your R session. (This data is taken from the ESL website, http:
//www-stat.stanford.edu/~tibs/ElemStatLearn/.) Now you should have x.014.tr,
y.014.tr: the predictors and class labels for the training set, and x.014.te, y.014.te:
the predictors and class labels for the test set. Recall that each row of the predictor matrix
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is a digitized 16× 16 image that has been unraveled into a vector (of length 256). You can
use the function plot.digit from the “plot.digit.R” file provided on the class website for
homework 2 to plot these images. For example, try plot.digit(x.014.tr[1,]) to plot
the first image in the training set.

(a) Perform LDA using the lda function from the MASS package. What is the dimension
p of the original feature space? What is the dimension used by LDA in the transformed
space, i.e., the real dimension used by LDA in order to classify between 0, 1, 4? Plot the
data in the transformed space, according to the scaling matrix returned by the function
lda. To emphasize the differences between classes, you can use col=y.014.tr+1 and/or
pch=as.character(y.014.tr).

(b) Draw decision boundaries between the classes 0, 1, 4 on your plot from (a).

(c) Predict the labels of the test set data x.014.te using the LDA model fit from (a).
(Hint: use the predict function; to read the relevant documentation, type ?predict.lda.)
What is the misclassification rate?

(d) Using the LDA model from (a), draw the class centroids and the decision boundaries
in the transformed space. Now draw the test observations on top of this plot. Pick out a
few misclassified observations, and plot these digits using plot.digit. Are these mistakes
“excusable”, i.e., are they digits that you would have had trouble classifying by eye?

(e) Install the package class using install.packages("class"). Use the function knn to
perform 1-nearest-neighbor classification on the test set x.014.te—that is, for every point
in x.014.te, label this observation according to the class of its nearest neighbor in the
training set x.014.tr. What is the misclassification rate of this rule?

(f) What can you say in terms of comparing the rules (LDA and 1-nearest-neighbors)?
Which has a lower misclassification rate? Which is easier to visualize? What is the effective
dimension used by each rule?

Bonus problem 1

Prove the formula for the lasso solution in the identity predictor matrix case, X = I, given
in Problem 1(b).

Bonus problem 2

Suppose f̂ is a linear estimator fit to the training data (xi, yi), i = 1, . . . n, meaning that
the vector of fitted values ŷ = (f̂(x1), . . . f̂(xn)) can be written as

ŷ = Sy

for some matrix S ∈ Rn×n (here S can depend on the inputs xi). You proved in problem 2
that this formula held when S = X(XTX)−1XT y. In general (beyond this case), for what
kinds of matrices S does the leave-one-out shortcut (1) hold?
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