
Information retrieval

Ryan Tibshirani
Data Mining: 36-462/36-662

January 17 2013

1

What we use to do

I want to learn about that magic trick with the rings!

Then: go to the library

Librarian Card catalog Metadata

Slow and expensive ...

2

What we do now

Now: search the web!

How did Google do this?

3

Information retrieval and representations

Information retrieval: given a set of documents (e.g., webpages),
our problem is to pull up the k most similar documents to a given
query (e.g., “magic ring trick”)

First step is to think of a way of representing these documents.
We want our representation to:

I Be easy to generate from the raw documents, and be easy to
work with

I Highlight important aspects of the documents, and suppress
unimportant aspects

There is kind of a trade-off between these two ideas

4

Try using the meaning of documents

What if we tried to represent the
meaning of documents? E.g.,

type.of.trick = sleight of hand;

date.of.origin = 1st century;

place.of.origin = Turkey, Egypt;

name.origin = Chinese jugglers

in Britain; ...

This would be good in terms of
our second idea (useful and effi-
cient data reduction), but not our
first one (extremely hard to gen-
erate, and even hard to use!)

5

Bag-of-words representation

Bag-of-words representation of a document is very simple-minded:
just list all the words and how many times they appeared. E.g.,

magic = 29; ring = 34; trick = 6; illusion = 7; link = 9; ...

Very easy to generate and easy to use (first idea), but is it too
much of a reduction, or can it still be useful (second idea)?

Idea: by itself “ring” can take on a lot of meanings, but we can
learn from the other words in the document besides “ring”. E.g.,

I Words “perform”, “illusion”, “gimmick”, “Chinese”, “unlink”,
“audience”, “stage” suggest the right type of rings

I Words “diamond”, “carat”, “gold”, “band”, “wedding”,
“engagement”, “anniversary” suggest the wrong type

6

Counting words

Recall problem: given a query and a set of documents, find the k
documents most similar to the query

Counting words:

I First make a list of all of the words present in the documents
and the query

I Index the words w = 1, . . .W (e.g., in alphabetical order),
and the documents d = 1, . . . D (just pick some order)

I For each document d, count how many times each word w
appears (could be zero), and call this Xdw. The vector
Xd = (Xd1, . . . XdW) gives us the word counts for the dth
document

I Do the same thing for the query: let Yw be the number of
times the wth word appears, so the vector Y = (Y1, . . . YW)
contains the word counts for the query

7

Simple example

Documents:

1: “Ryan loves statistics.” and 2: “Jess hates, hates statistics!”

Query: “hates statistics”

D = 2 documents and W = 5 words total. For each document and
query, we count the number of occurences of each word:

hates Jess loves Ryan statistics

X1 0 0 1 1 1

X2 2 1 0 0 1

Y 1 0 0 0 1

This is called the document-term matrix

8

Distances and similarity measures

We represented each document Xd and query Y in a convenient
vector format. Now how to measure similarity between vectors, or
equivalently, dissimilarity or distance?

Measures of distance between n-dimensional vectors X,Y :

I The `2 or Euclidean distance is

‖X − Y ‖2 =

√√√√ n∑
i=1

(Xi − Yi)2

I The `1 or Manhattan distance is

‖X − Y ‖1 =
n∑

i=1

|Xi − Yi|

Basic idea: find k vectors Xd with the smallest ‖Xd − Y ‖2
(Note: `1 distance doesn’t work as well here)

9

Bigger example

Documents: 8 Wikipedia articles, 4 about the TMNT Leonardo,
Raphael, Michelangelo, and Donatello, and 4 about the painters of
the same name

1 2 3 4 5 6 7 8

Query: “Raphael is cool but rude, Michelangelo is a party dude!”

but cool dude party michelangelo raphael rude ... dist

doc 1 19 0 0 0 4 24 0 309.453

doc 2 8 1 0 0 7 45 1 185.183

doc 3 7 0 4 3 77 23 0 330.970

doc 4 2 0 0 0 4 11 0 220.200

doc 5 17 0 0 0 9 6 0 928.467

doc 6 36 0 0 0 17 101 0 646.474

doc 7 10 0 0 0 159 2 0 527.256

doc 8 2 0 0 0 0 0 0 196.140

query 1 1 1 1 1 1 1 0.000

10

Varying document lengths and normalization

Different documents have different lengths. Total word counts:

doc 1 doc 2 doc 3 doc 4 doc 5 doc 6 doc 7 doc 8 query

3114 1976 3330 2143 8962 6524 4618 1766 7

Wikipedia entry on Michelangelo the painter is almost twice as
long as that on Michelangelo the TMNT (6524 vs 3330 words).
And query is only 7 words long! We should normalize the count
vectors Xd and Y in some way

I Document length normalization: divide X by its sum,

X ← X/

W∑
w=1

Xw

I `2 length normalization: divide X by its `2 length,

X ← X/‖X‖2

11

Back to our Wikipedia example

dist/doclen dist/l2len

doc 1 (tmnt leo) 0.385 1.373

doc 2 (tmnt rap) 0.378 1.322

doc 3 (tmnt mic) 0.378 1.319

doc 4 (tmnt don) 0.389 1.393

doc 5 (real leo) 0.390 1.405

doc 6 (real rap) 0.382 1.349

doc 7 (real mic) 0.381 1.325

doc 8 (real don) 0.393 1.411

query 0.000 0.000

Great!

So far we’ve dealt with varying document lenghts. What about
some words being more helpful than others? Common words,
especially, are not going to help us find relevant documents

12

Common words and IDF weighting

To deal with common words, we could just keep a list of words like
“the”, “this”, “that”, etc. to exclude from our representation. But
this would be both too crude and time consuming

Inverse document frequency (IDF) weighting is smarter and more
efficient

I For each word w, let nw be the number of documents that
contain this word

I Then for each vector Xd and Y , multiply wth component by
log(D/nw)

If a word appears in every document, then it gets a weight of zero,
so effectively tossed out of the representation

(Future reference: IDF performs something like variable selection)

13

Putting it all together

Think of the document-term matrix:

word 1 word 2 . . . word W

doc 1

doc 2
...

doc D

I Normalization scales each row by something (divides a row
vector X by its sum

∑W
i=1Xi or its `2 norm ‖X‖2)

I IDF weighting scales each column by something (multiplies
the wth column by log(D/nw))

I We can use both, just normalize first and then perform IDF
weighting

14

Back to our Wikipedia example, again

dist/doclen/idf dist/l2len/idf

doc 1 (tmnt leo) 0.623 1.704

doc 2 (tmnt rap) 0.622 1.708

doc 3 (tmnt mic) 0.620 1.679

doc 4 (tmnt don) 0.623 1.713

doc 5 (real leo) 0.622 1.693

doc 6 (real rap) 0.622 1.703

doc 7 (real mic) 0.622 1.690

doc 8 (real don) 0.624 1.747

query 0.000 0.000

Oops! This didn’t work as well as we might have hoped. Why?

(Hint: our collection only contains 8 documents and 1 query ...)

15

Stemming

Having words “connect”, “connects”, “connected” “connecting”,
“connection”, etc. in our representation is extraneous. Stemming
reduces all of these to the single stem word “connect”

Can a simple list of rules provide perfect stemming? It seems not:
consider “connect” and “connectivity”, but “relate” and
“relativity”; or “sand” and “sander”, but “wand” and “wander”.

Stemming also depends on the language. Apparently it is easier in
English than it is in:

I German, a “fusional” language, e.g.,

Hubschrauberlandeplatz = helicopter landing pad

I Turkish, an “agglutinative” language, e.g.,

Turklestiremedigimizlerdensinizdir = maybe you are one of
those whom we were not able to Turkify’

16

Feedback

People are usually better at confirming the relevance of something
that’s been found, rather than explaining what they’re looking for
in the first place

Rocchio’s algorithm takes feedback from the user about relevance,
and then refines the query and repeats the search

1. User gives an initial query Y

2. Computer returns documents it believes to be relevant, and
user divides these into sets: revelant R and not relevant NR

3. Computer updates the query string as

Y ← αY +
β

|R|
∑
Xd∈R

Xd −
γ

|NR|
∑

Xd∈NR

Xd

4. Repeat steps 2 and 3

We have to choose constants α, β, γ > 0 (interpretations?)

17

Text mining in R

Helpful methods implemented in the package tm, available on the
CRAN repository

E.g.,

dtm = DocumentTermMatrix(corp,

control=list(tolower=TRUE,

removePunctuation=TRUE,

removeNumbers=TRUE,

stemming=TRUE,

weighting=weightTfIdf))

18

Recap: information retrieval

In information retrieval we have a collection of documents and a
query (this could just be one of our documents), and our goal is to
find the k most relevant documents to the query

Achieved by using a bag-of-words representation, where we just
count how many times each word appears in each document and
the query

This gives us a document-term matrix. We can hence return the k
documents whose word count vectors are closest to the query
vector (these are rows of the matrix) in terms of `2 distance

Important extensions include normalization (row scaling) and IDF
weighting (column scaling) the document-term matrix, before
computing distances. Other extensions: stemming, feedback

19

Next time: PageRank

Taking advantage of the link structure of the web

20

