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Clustering as dimension reduction

We've thought about clustering observations, given features. But
in many situations, we can actually cluster the observations or the
features or both. E.g.,

(From Makretsov et al. (2004), “Hierarchical clustering analysis of
tissue microarray immunostaining data identifies prognostically
significant groups of breast carcinoma”)

If we cluster the features using K-means or hierarchical clustering,
then we could replace the features by cluster centers. This would
reduce the dimension of our feature space
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What is dimension reduction?

Dimension reduction: the task of transforming our data set to one
with less features. A new feature can be one of the old features, or
it can be a some linear or nonlinear combination of old features.
We want this transformation to preserve the main structure that is
present in the feature space

This is a broader goal than that of clustering. It is often the first
step in an analysis, to be followed by, e.g., visualization, clustering,
regression, classification Xy X & [RP
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We're going to start With linear dimension reduction. This means:
looking for straight lines in the feature space along which the data

exhibit an interesting trend

Specifically, we're going to interpret “interesting” to mean high
variance
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Review: prOJectlon7nto unit vectors
A vector v € RP with H’UH22: v!v/=1 is said to have unit norm.
The projection of z € R onto (the'direction of) vis (z1v)v.

Think of this as ¢ - v, Wlth a coefficient or “score” of ¢ = CL‘T’U

Consider a matrix X € R™*P. and consider prOJectlng each row
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z; € RP onto v. The entries of Xv = 27| € R"™ are the
zly -

scores, and the rows of X fuv E IR™*P. are the projected vectors
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Example: projections onto unit vectors

Example: X € R°%%?, v, vy € R?

Scores along v4 Scores along vs
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W“\ Review: projections onto orthonormal vectors

Vectors v1, v € ]Rp are orthogonal if ful vo =0, and vy, ... Vg € RRP
are orthogonal if v} v; = 0 for any ¢, j. Vectors vy, ... v, € RP are
orthonormal it they are orthogonal and each vj has unit norm
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The projection of z € R? onto (the space spanned by) orthonormal

vectors vy, ...vr € RP is Z (33 vj)vj The score along the jth

direction is z1v; TS ¢

Write the collection v1,...v, € RP as a matrix V' € RP*F where
each v; is a column. Consider a data matrix X € R™ P, we want
to project rows of X onto columns of V. The scores are given by

/ :U{’Uj \
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XV e R™F, with jth column Xv; = 71 € R", which
StereS xT,UJ
contains the scores from projecting X onto v;. The prOJectlons are
the rows of XVV1 € R*¥P == |
o e |V
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Example: projections onto orthonormal vectors

Example: X € R?%99%3 and vy, vy, v3 € R? are the unit vectors

parallel to the coordinate axes

Scores onto blue and red
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Not all linear projections are equal! What makes a good one?
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Review: sample statistics (in vector notation)
n
%;% K

Given a vector z € R"™ of n observations

1 .
Sample mean: 7 = —z71 € R, where 1 € R" is the vector of 1s

1
Sample variance: —(z — z1)' (z —z1) € R

n " e
A ;2"'1 Cxi-X)
Given a matrix X € R™?, of n observat|ons by p features

1
Sample mean vector: X = — X1 ¢ Rp

1 _ _
Sample covariance matrix: —(X — 1X)T(X — 1XT) ¢ RP*P
n

| 1 _ _
Total sample variance: trace(m(X —1XHI(X - ]lXT)) c R
- n

(where the trace is simply the sum of the diagonal entries, i.e., for
A € RP*P, trace(A) = > 51 Ai)
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Centering vectors and matrices |
(’?(l-— Y1 Ty-K - Xa";‘??
To center z € R™ means to replace it by z = — 1 € R". The
new Z has sample mean zero, but its sample variance is the same
as before: 1575 = L(z —z1)T(z —71) X 4= w1 =% f"ﬂ
= O.
To center (or column-center) X € R™*P means to replace it by
X = X — 1XT € R"™P. Each column of X now has sample mean
zero, but the sample covariance of X is the same as before:

LXTX = L(X —1XT)T(X —1XT)

Assume that the columns of X € R™*P have been centered (drop

the tilde notation). Then Xv € R"™ has sample mean zero for any

vector v € RP (Homework 2), therefore the sample variance of Xv
is 2(Xv)T(Xv) = || Xl

-

(Centering makes the math cleaner!)
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Principal component analysis

Principal component analysis (PCA) is nearly as old as statistics
itself. Because it has been widely studied, you will hear it being
called different things in different fields

We are given a data matrix X € R™”P, meaning that we have n
observations (row vectors) and p features (column vectors). We
assume that the columns of X have been centered. (Is this going
to change the structure that we're interested in?)
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First principal component direction and score

The first principal component direction of X is the unit vector
v1 € RP that maximizes the sample variance of Xv; € R™ when

—————— Sy

compared to all other unit vectors Score whea project

For any v € RP, the vector Xv € R™ has sample mean zero and
sample variance +(Xv)? (Xv) (recall that we column centered X).
Hence the first principal component direction v1 € R? is

_,v; = argmax (Xv)' (Xv)

deedi ola=l TR senple veasnee of Xuf
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The vector Xv; € R" is called the first principal component score
of X, and u; = (Xwvy1)/d; € R™ is the normalized first principal

component score. Here d; = /(Xv1)T(Xwv1), and di/n is the
amount of variance explained by v, i

SRS,
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Example: first principal component direction and score

Same example data as earlier: X € R°9%?
First principal component direction First principal component score
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Beyond the first direction and score

What happens next? The idea is to successively find orthogonal
directions of the highest variance.

Why orthogonal? Because we've already explained the variance in
X along v1, and now we want to look at variance in a different
direction. Any direction not orthogonal to v; would neccessarily
have some overlap with v, i.e., it would create some redundancy
in explaining the variance in X

V4

(Plus, it makes the math easier!)
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Second principal component direction and score

Given the first principal component direction v; € R?, we define
the second principal component direction vo € R? to be the unit
vector, with v4 v; = 0, that makes Xvy € R™ have maximal
sample variance over all unit vectors orthogonal to v;. This is

vy = argmax (Xv)? (Xv)
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The vector Xvy € R™ is called the second principal component
score of X, and ug = (Xwy)/d2 € R™ is the normalized second
principal component score. Here dy = 1/(Xw2)T(Xvs), and d3/n
is the amount of variance explained by v )
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Example: second principal component direction and score

g 50x2
Same example data as earlier: X € R
First two principal component directions First two principal component scores
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Further principal component directions and scores

Given the k — 1 principal component directions v1,...vx—1 € R?
(note that these are orthonormal), we define the kth principal
component direction vy € R? to be

yp=  argmax (Xv)'(Xv)

[v][2=1
'UT’Uj:O, i=1,..k—1

The vector Xv € R™ is called the kth principal component score
of X, and u, = (Xuv)/di € R™ is the normalized kth principal
component score. Here dy = +/(Xvi,)T (Xwy), and d2/n is the
amount of variance explained by vy -
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Properties and representations

H
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» For the kth principal component direction v, € RP and score
ur € R", the entries of Xuv, = dkuk are the scores from
projecting X onto vg, and the rows of X'ukfuk = dkukvk are
the projected vectors

» The directions v and normalized scores uy are only unique up
to sign flips
» How many principal component directions/scores are there?

There are p, because if vy, ... v, € RP are orthonormal, then
they are linearly mdependent1

» Concise representation: let the columns of V' € RP*P be the
directions. Scores: columns of XV € R"™*P. Projections onto
Vi (first k columns of V'): fows of XVka € R"*P XV

3[?(\“ A - . Fj €

'To be precise, here we are assuming that p < n and rank(X) = p. In
general, there are exactly r = rank(X) principal component directions

rKnY\k -'
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Example: principal component analysis in R?

Example: X € R2%°%3_ Shown are the three principal component
directions v1, v, v3 € R3, and the scores from projecting onto the
first two directions
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Example: projecting onto principal component directions

Same example: X € R2900%3 4y vy, ... v3 € R®. What happens if
replace X by its projection onto v1? Onto vy, v2? Onto vy, v9,v37

Projection onto vy Projection onto vy, vo Projection onto vy, Vo, V3
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The third plot looks exactly the same as the original data. Is this a

coincidence? No! (Why?) -
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Proportion of variance explained

Recall that we said: d2 /n is the amount of variance explained by
the kth principal component direction vy

Two facts (Homework 2):

15 g2

> The total sample variance of X is - =1 9;

» The total sample variance of XV, V,! is %Zf___l d% (amount
of variance explained by v; ... vg)

Hence the proportion of variance explained by the first £ principal
component directions vy, ...V IS

I
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If this is high for a small value of k, then it means that the main
structure in X can be explained by a small number of directions
| 20




Example: proportion of variance explained

Example: proportion of variance explained as a function of k, for
the donut data

Donut data
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Principal component analysis in R

The function princomp in the base package computes directions
‘and scores via an eigendecomposition of X* X. E.g.,

pc =
dirs
SCrs

princomp (x)
= pcPloadings # directions
= pcPscores # scores

The function prcomp in the base package computes directions and
scores via a singular value decomposition of X. E.g.,

E.g.

pc =
dirs
SCrs

/

y

)
prcoﬁgfx)
= pcProtation
= pcdx
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Recap: principal component analysis

We reviewed basic projective geometry, and sample statistics in
vector/matrix notation

We defined the principal component directions vy, ...v, € RP of a
centered matrix X € R™*P, as successively orthogonal unit vectors
that maximize the sample variance

We also defined the principal component scores Xv; = djuq, ..
Xvp = dpu, € R™, and the amounts of variance explained by each
direction d /n,...d2/n

The proportion of variance explained is a nice way to quantify how
much structure is being captured as k varies
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Next time: more principal component analysis

How do we actually compute principal component directions and
scores? What can we do with them?
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