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Reminder: projections onto unit vectors

v, 7%
The projection of x € R™ onto a unit vector v € R" is given by \
(:UT’U)?J € R™. The score from this projection is IL’TU c R -

The projections of the rows of X € R™*? onto unit vector v E RP
are given by rows of X’U’U € R™¥P. The scores are the entries of

X'U -~ Rn %\/ ?[X;TV
nTV

Example from last time: X € R%9%2, v, v9 € R?
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Reminder: first principal component direction and score

Recall: given data matrix X € R™*? (n observations, p features),
with centered its columns  emoved coflummn—wise meons

The first principal component direction of X is the unit vector

v € R? such that Xwv; has the highest sample variance compared

to all other unit vectors, i.e., . somple
/ v\ prn Ce

U1 = argmax (Xv)" (Xv) A X

The vector Xv; € R" is called the first principal component score
of X, and u; = (Xw1)/d1 € R"™ is the normalized first principal
component score, where d; = v/(Xv1)T(Xv1). The quantity d4/n
is the amount of variance explained by v4

The entries of Xv; = djuy are the scores from projecting X onto

v1, and the rows of XfulfulT = dlulfuf are the projected vectors
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Example: first principal component direction and score

; . 2
Example from last time: X € R>%*
First principal component direction First principal component score
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Reminder: projections onto orthonormal sets

Vectors v1, ... v, € RP are called orthonormal if each pair v;,v; is
orthogonal, v{v; = 0, and each v; has unit norm

The projection of x € R? onto an othonormal set vy, ... v € RP is

Zfzj( ij)gi € RP. The score along v; is zlv; pevjeck aq ot

<j N Yk ?
The projections of rows of X € R™*P onto orthonormal columns of
V' € RP** are given by rows of XVV7T € R™*P. The scores are
columns of XV € R™*, j.e., the scores along v; are given by the ]
. . ) _ \ \ e P *
entries of Xv; € R \/ = [“." e Vi 3

Example from last time: X € R#000%3
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Further principal component directions and scores

Given first £ — 1 principal component directions v1,...v5_1 € RP
(these are orthonormal), the kth principal component direction
v € IRP is the unit vector such that Xwvg has the highest sample
variance over all directions orthogonal to v1,...v,_1, i.e.,

- Se-emple
U = argmax.  (Xv)!(Xv) {;// Y
' [v]l2=1
vT'szO, j2:1,...k;-—1

The vector Xv; € R" is called the kth principal component score
of X, and uy = (Xwvg)/dr € R™ is the normalized kth principal
component score, where di = /(Xwg)T(Xvy). The quantity

d2 /n is the amount of variance explained by vy

The entries of Xwv, = dpug are the scores from projecting X onto
vk, and the rows of Xfukfvg = dkukv,{ are the projected vectors




Example: second principal component direction and score

: 50 x 2
Same example as before: X € R
First two principal component directions First two principal component scores
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Example: principal component analysis in R’

Example from last time: X € R?000%3 Shown are the first three
principal component directions vy, v, v3 € R3, and the scores from
projecting onto the first two directions

First three principal component directions First two principal component scores
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Example: projecting onto principal component directions

Same example. What happens if replace X by its projection onto
v1? Onto ’Ul,’vz? Onto vy, v9,v3?

Projection onto vy Projection onto vy, vo Projection onto vy, Vo, Vg
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The third plot looks exactly the same as the original data. Is this a
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Example: principal component analysis in R

Example: data from 2012 Cadillac Championship, professional golf
tournament. Here X € R7?*12 72 golfers with 12 features:

eagles

birdies

pars

bogeys
double.bogeys
driving.accuracy
driving.distance
strokes.gained.putting
putts.per.round
putts.per.gir
greens.in.reg
sand.saves

These are average measurements over the 4 day tournament
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The first two principal component directions vy, v3 € R'? are:

eagles
birdies
pars
bogeys

double.bogeys
driving.accuracy
driving.distance
strokes.gained.putting -0.
putts.per.round
putts.per.gir
greens.in.reg

sand. saves

0.
0.
-0.
-0.

PC1

.139
.463
.168
.303
.062
.128
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325
491
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238

PC2
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SCA(&_{

For each direction, look at the signs ... what do you notice here?
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Scores from projecting onto vy, vy € R1?:

First two principal component scores
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Dimension reduction via the principal component scores

As we've seen in the examples, dimension reduction via principal
component analysis can be achieved by taking the first & principal
component scores Xvy,... Xv, € R™ X\/h & FRMK

We can think of Xwvq,... Xv; as our new feature vectors, which is
a big savings if kK < p (e.g. k=2 or 3)

An important question: how good are these features at capturing
the structure of our old features? Broken up into two questions:

1. How good are they, for a fixed k7

2. What exactly do we gain by increasing k7
h

Recall that the second question can be addressed by looking at the
proportion of variance explained as a function of &

’L_ P —
d ) oy
“ih .
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Example: proportion of variance explained

For the golf data set:
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Approximation by projection

As for the first question, think about approximating X by XV, V,!
the projection of X onto the first k& principal component directions

An important alternate characterization of the principal component
directions: given centered X € R™?, if Vj, = [v1 ...v;] € RP*F is
the matrix whose columns contain the first k£ principal component

directions of X, then N VA
Ve Lo

np
XV, Vil = argmin || X — A||% = argmin Z Z(Xij — Ayj)?
- rank(A)=k T rank(A)=k ;_q j=1

In other words, XVkaT is the best rank &k approximation to X

(Aside: the above problem is nonconvex, and would be very hard
to solve in general!)
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Scaling the features

We always center the columns of X before computing the principal
component directions. Another common pre-processing step Is to
scale the columns of X, i.e., to divide each feature by its sample
variance, so that each feature in our new X has a sample variance
of one

&hsV/ Chwﬂjﬁa{\
Why? Look at the principal component of golf data, without
scaling:

eagles birdies pars

-0.001 0.007 0.007

bogeys double.bogeys driving.accuracy

-0.015 0.002 0.071
driving.distance strokes.gained.putting putts.per.round
-0.122 0.015 -0.016
putts.per.gir greens.in.reg sand.saves

-0.001 -0.004 0.990
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And note that the golf features have sample variance:

eagles

0.033

bogeys

0.561
driving.distance
100.702
putts.per.gir
0.006

But sometimes scaling is not appropriate (e.g., when you know the

birdies

0.685

double.bogeys

0.095
strokes.gained.putting
0.739

greens.in.reg

54.162

pars

0.965
driving.accuracy
59.837
putts.per.round
1.263

sand.saves
423.474

variables are all on the same scale to begin with)
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Computing principal component directions

There are various ways to compute principal component directions.

We'll consider computation via the singular value decomposition

(SVD) of X:
X = U D VI &

n X p nXp PXp PXp
Here D = diag(ds,...dp) is diagonal with dy > ... > d, > 0, and
U,V both have orthonormal columns. This gives us everything:

> columns of V, v1,...v, € RP, are the principal component
directions

» columns of U, ug,...u, € R", are the normalized principal
component scores

» squaring the 7th diagonal element of D and dividing by n,
ds /n, gives the variance explained by v;

(Don't forget that we must first center the columns of X1)

 apenca
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Note that
XV =UDV'V =UD

because VIV = I. This means that
vaj :dej, j: 1,...p
two ways of representing principal component scores, as expected

Note also that
| X'x =vp?v?

and so vy, ... v, are eigenvectors of X X. (Check?)
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Recap: principal component analysis

We reviewed the principal component directions vy, ...v, € R?
and scores Xwvi,...Xv, € R"™ of a centered matrix X € R"*?

The matrix XV;, € R™¥# (where Vi, contains the first £ principal
component directions) can be thought of as a reduced dimension
version of X

The matrix XVkaT € R™*P (projecting X onto its first k principal
component directions) can be thought of as an approximation to
X in the original feature space. For a fixed k£ this approximation is
the best we can do across rank k& matrices (measured by Frobenius
distance to X)

Computation can be done via the singular value decomposition

Scaling the variables can crucial, especially if they are on different
numeric scales
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Next time: nonlinear dimension reduction

The famous “swiss roll” data set ...

(From Roweis et al. (2000), “Nonlinear dimensionality reduction
by locally linear embedding”)
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