
Dimension reduction 3: Nonlinear dimension
reduction

Ryan Tibshirani
Data Mining: 36-462/36-662

February 12 2013

Optional reading: ESL 14.8–14.9

1

Reminder: principal component directions and scores

Given a matrix X ∈ Rn×p, we defined the principal component
directions to be orthonormal vectors in Rp along which the sample
variance of X is successively maximized. For centered X, the kth
principal component direction is

vk = argmax
‖v‖2=1

vT vj=0, j=1,...k−1

(Xv)T (Xv)

The vector Xvk ∈ Rn is called the kth principal component score
of X, and uk = (Xvk)/dk ∈ Rn is the normalized kth principal
component score, with dk =

√
(Xvk)T (Xvk). The quantity d2k/n

is the amount of variance explained by vk

This is all captured by singular value decomposition X = UDV T :

I U ∈ Rn×p and has columns u1, . . . up
I D ∈ Rp×p and D = diag(d1, . . . dp)

I V ∈ Rp×p and has columns v1, . . . vp
2

Reminder: principal component scores and representations

Think of the first k scores Xv1 = d1u1, . . . Xvk = dkuk ∈ Rn as
new feature vectors. Write this as Z = XVk = (UD)k ∈ Rn×k,
and think of Z as are new low-dimensional representation for X

The rows z1, . . . zn ∈ Rk of Z are the data points in this new
low-dimensional representation. Question: how are the pairwise
distances related to those of x1, . . . xn ∈ Rp (rows of X)?

Note that zi = V T
k xi. Because Vk has orthonormal columns,

‖zi − zj‖2 = ‖V T
k xi − V T

k xj‖2 = ‖VkV T
k xi − VkV T

k xj‖2

Finally, ‖VkV T
k xi − VkV T

k xj‖2 ≈ ‖xi − xj‖2, because we saw last
time that XVkV

T
k was the best rank k approximation of X

So answer: they’re pretty close!

3

The inner-product matrix

Given X ∈ Rn×p, the matrix XXT ∈ Rn×n is the inner-product
matrix. If X has ith row xi ∈ Rp, then (XXT)ij = xTi xj

Suppose that we wanted the principal component scores of X, but
we only had XXT . Could we still compute them?

Yes! Using the singular value decomposition X = UDV T , we have

XXT = UD2UT

This is called an eigendecomposition of XXT because the columns
of U are eigenvectors of XXT . (Check?)

Hence we can compute the eigendecomposition or “factorize” the
inner product matrix XXT , and then the scores are given by the
columns of UD, i.e., djuj , j = 1, . . . p

4

Low-dimensional representation from distances only

Suppose that instead of measuring X ∈ Rn×p directly, we only
measured the distances between pairs of observations,

∆ij = ‖xi − xj‖2, i, j = 1, . . . n

This gives us a distance matrix ∆ ∈ Rn×n

We want a lower-dimensional representation z1, . . . zn ∈ Rk, for
some small k (e.g. k = 2 or 3), such that ‖zi − zj‖2 ≈ ∆ij , for
every i, j = 1, . . . n

We saw that the principal component scores do exactly this, but
these rely on X or XXT , which we don’t have here. We can only
use the distances ∆ij

Is this possible?

5

Unidentifiability

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

−2 0 2 4 6

−
2

0
2

4
6

Representation

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

−2 0 2 4 6

−
2

0
2

4
6

Translated representation

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

−2 0 2 4 6

−
2

0
2

4
6

Rotated representation

Distances ∆ij are invariant under any orthonormal transformation
O ∈ Rp×p of x1, . . . xn (i.e., OTO = I)

6

Multidimensional scaling

Assume that X ∈ Rn×p has been column centered (this is enough
to deal with translation unidentifiability)

Multidimensional scaling (MDS): given distance matrix ∆ ∈ Rn×n,
we

1. Recover the inner-product matrix B = XXT ∈ Rn×n

2. Factorize B to get the first k principal component scores

(Called classical multidimensional scaling, there are other flavors,
e.g., least squares multidimensional scaling)

We’ve already seen how to do step 2: remember that we compute
the eigendecomposition B = UD2UT and then the first k principal
component scores are the first k columns of UD

So, how do we do step 1, i.e., how do we recover B?

7

Recovering inner-products from distances

The following procedure can be used to recover the inner-products
B = XXT from ∆ (Homework 2, bonus):

1. Compute Aij = −1
2∆2

ij to form the matrix A ∈ Rn×n

2. Double center A—i.e., center both the columns and rows of
A—to recover the matrix B ∈ Rn×n. Note that this is the
same as:

B = (I −M)A(I −M)

where M = 1
n11

T ∈ Rn×n

Does it matter whether we first center the columns or the rows?

8

Example: donut data

Recall donut example: X ∈ R2000×3. The left plot shows X and
the right plot shows the multidimensional scaling representation
Z ∈ R2000×3 computed from the distance matrix ∆ ∈ R2000×2000

Original data

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
 0

.0
 0

.5
 1

.0
 1

.5

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

 1.5

●
●

● ●
●

●

● ●
●

●
●●

●●

●

●

●●
●

●
●

●

●●
●

●●

●
●

●●
●●

● ●
●●

●●●
●●

●

● ●
●

●

●●

●
●● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●

●●
●

●
●

●
●
● ●

●● ●
●

●

●
●

●
● ●●

●

●

●

●

●
●

●● ●

●

●●●
●●

●●
●●●

● ●●

●

●

●

● ●

●

● ●

●
●

● ●

●● ●●

●

●●
●

●

●
● ●

●● ●
●● ● ●●

●
●●

●
●

●

●●
●

●
●●

● ●

●

● ●
●●

● ●

●

●●

●
●● ●● ●●

●

● ●

●
●●

●● ●
●● ●●

● ●
● ●

●● ●●

●●
●

●

●

●
●● ●

●

●

●
●

●●
●

● ●

●

●
● ●

●● ●●
● ●● ●●

●

●
●

●

●

● ●

●
●

● ●

●

●
●

●
●

●

●
●

●

●
● ●

●
●

●●

●
●● ●

● ● ●

●
●●

●
●

●
●

●

●
●

●

●
●

●
●

●●
● ●

●
●

●● ●●

●

●

●●
●

● ●
●

●

●

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●●●
●

●
●●

●
●

●

●

●●
●

●
●

●
● ●

●

●
● ●

●

●
●

●

●
●● ●

●●●
●

●
●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●
●

●

● ●●

●

●

●
●

●

●

●●●

●
●

●

●●

●

●
●● ● ●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●

●

●●
● ●

●

●●
●●●●

●

● ●

●
●

●
●

●● ●

●

●
●

●
●

●

●
●

●
●

●●●
●

●
●

●
●

●●
●

●

● ●

●

●
●●

●

●
● ●

●

●

●

●

●
●

●
●
●

●
●

●

●●

●
● ●

●●● ●
●

●

●●
●

● ●
●

●
●

●●

●

●

● ●

●

●●

●
●

●●
●●

●

●

●

●

●

●
●

●
●●

● ●
●

●● ● ●●●●
●

●

●
●

●● ●

●

●●●●

●

●

●
●

●
●

●
●

●

●

●
●●

●
●

●●

●

● ●●●

●

●
●

●

●

●

● ●
●

●
●

● ●
●
●●

●
●

●
●

●●
●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●●

●

● ●●

● ●

●
●

●
●●● ●

● ●
●

● ●
●

●●

●

●

●●

●
●

●
●●

●
●

●

●

●
●● ●

●

●

●

●●

●●
●

●

●

●

●

● ●●

●
●● ●●

●

● ●●
●

●

●●
●

●

●
●●

●

● ●

●

●●
●

●

●●

●●
●

●
●

●
●●

●●●

●

●
●●

●

●

●
●●

●●
●

● ●
●

●
●●

● ●

●

●

●●

●

●

●

●

●●●

●

●
●●
●

●

●

●

●

●
●

●
●
●● ●

● ●●●

●

●●
●

●

●
●

●

●●
●

●
●

●
●

●
●

●●●

●

●●●●
●

●

●
●

●

●
●

●

●

●

●

●

●● ●
●●

●

●
●

●
●

●

●●●●
●●●●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●●
● ●

● ●
●

●

●

●

●

●● ●● ●
● ●

●
●

●
●

● ●● ●●

●●

●

●● ●●●●●
●●●

●
●

●●

●

●

● ●

●

●●
●

● ●

●

●
●

● ●●●●
●

●

●
●● ●

●

●

●● ●
●

●
●

●

● ●
●

●
●

●

●

●● ●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

● ●●

●●
●
●

●
●

●●
●

●
●

●

●●
●●

●

●
●●● ●

●

● ●●
●
●

● ●●
●

●

●
●

●
●●●

●

●

●
● ●● ●●●

●●
●

●

● ●●
● ●●

●

●●
●

●
●

● ●
●●

●●
●

●
●●

●
●

●

●●
●●

●

●●● ●

●
●
●

●
●

●
●

●

●

●
●

●

●

●

●

● ●
● ●

●●

●
●

●● ●

●

●
●

●

●
●

●●

●

●●
●
●

●
●

●

●
● ●●

●
●

●

●
● ●●

●●

●
●● ●●●

●●

●●

●

●

●

●
●

●
● ●

●
●

●
●

●
●

●●

●
●

●
● ● ●●●

●
●

●
●

●

● ● ●● ●
●

●
●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●
●

●

● ●
●

●●

●

●
● ●● ●

●●●

●

●
●

●
● ●

●
●

●

●

● ●● ●●
●● ●

●
●

●

●
●

●
●
●

●

●

●
●●

●
●

●●
●

●
●

●
● ●

●

●

●

●
●● ●

●

●

●

●
● ●

●

●●
●

●

●
●●

● ●

●●

●
●

●● ●●
●●

●

●

●
●

●
●

●

●

●
●●

●
● ●

●

●

●

●●
●

●

● ●

●
●●

●

●

●

●
● ●

●●

● ●
●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●●●
●

●

●●●●

●

●

●
●● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●● ● ●

●
●

●
●

●

● ●

●
●
● ●

●

●

●
●●

●●
●

●

●
●

●●

●

●
●

●
●

●
● ●

●
●

●

●
● ●● ●● ●

●

●

● ●

●

●

●
●●●●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●
●

●

● ●● ●

●

● ●●●

●

●
● ●

●● ●

●

●●

● ●

●
●

●
●

●
●

●

●●
● ●●

●

●
●

●

●● ●
●

●

● ●

● ● ●

●●
● ●

●●

●

●
●

●
●

●
●●

●

●

●
●

●
●

●
●

●●

●

● ●

●

●●

●

●
●

● ●

●
●

●

●
●

●

●
●

●
●

●

●
● ●

● ●
●●● ●

●

● ●
●

●
●●●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●

●
●

●
●

● ● ●●
●

●

●

●

●

●

●●● ●

●

●
●

●
●●

●

●
●● ● ●●

●

●
●

●
●●

●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●●

● ●

●● ●

●
●

●

●

●
●

●
●

●●

●●
●

●●

●●

●●

●
●

●

●

●

●
●

●
●

●

●

●

● ●

●
●
●

● ●
●

● ●
●●●●

●
●

●

●

●
●

●

●

●

● ●
●

●

●

●●
●

●

●
●

●
●●●

●

●●●●
●

●
●

●
●

●

●

●●
●

●

●● ●● ●
●

●●
●

●

●

●

●
●

●
●

●
●

●
● ●

●

●
●

●
●

●●

● ●

●
●

●

●●
●

●
●●

●
●

●

●

●● ●●
●

●

●

●●● ●

●

● ●

●

● ●
●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●
●● ●

●

●
●

●●

●
●

●
●

●

●●
●

●
●

● ●

● ●
● ●

●

●

●
● ●

●

●

●
●

●
●● ●● ●

●
●

●

●

●
●

● ●

●
●

●

●

●●●
●

●● ●
●

● ●●

●●

●

●●

●

●● ● ●
● ●●● ●

●

●

●

●

●

●

●●
●

●●

● ●●
●
●

●

● ●●●

●
●

●
●

●

●
●
●

●
●● ●

●
●

●
●

●
●

● ●

● ●

●
●

●

● ●
●

●
●

●
●

●
●●

●

●●
● ●●

●
●
● ●

●

●

●

●
● ●●

●
●

●

●

●

●

● ●
●

●●

●

●

● ● ●

●
●

Multidimensional scaling representation

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
 0

.0
 0

.5
 1

.0
 1

.5

−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

 1.5

● ●
● ●

●●●

●
●

●

●
●

●●

●
●●

●
●

●●
●
● ●

●

●

●●
●●●

● ●

●
● ● ●

●

●

● ●●

●

●

●●
●

●

●● ● ●
●●

●

●
●

● ●

●●
●

●● ●
●

●

●
●

●
●

●
●

●

●
●

●
●
● ●

●
●

● ●● ●

●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●
●●
●●
●●

●

●

● ●
●

●
● ●●

●

●

●

●●
●●●

●

●
●

●
●

●●●●
●

●

●
●●

●
●● ●●

●

● ●

●

●

●

●
●● ●●

●
●

●

●

●
●
●

●●

●
●●

● ●
●

●
●● ●

●

●

● ●

●

●●
●●

●
●

●
●● ●●

●

●
●

●

●

●
●●

●●

●

●●

●

● ●
●

●

●
●

●
●

●

●

●●

●
●

●

●

●●

●

●

● ●● ●
●

●

●
●

●

●●

●

●

●
●

●
●

● ●

● ●

●

●●●

●
●●

●● ●
●

●●
●

●●

●

●●

●

●
●

●
●

●●

●
●

●

●
●

●
●●

●

●

●●
●

●

●
●

●

●
●
●

●
●●●

●

●
●

● ●●

●

●●
●●

●

●
● ●

●

●●●
●●●

● ● ●
● ●●

●

●
●

●●

●

●●

●● ●
● ●

●

●●●● ●
●

● ●●● ● ●

●
●●●

●

●
●● ●

● ●●
● ●

●

●

●
●

●
●

●

●●
●

●

●

● ●●

●

●

●

●
●● ●

●

●

●

●

●●
●

●

●

●

●

●

● ●

● ●
● ●

●
●

● ●

●

●

●

● ●

●●
●

●
●

●

●
●

●
●

●

●●●● ●
● ● ●

●

●

●
●

●

●
●●

●

●

●●
●

●
●●

●●

●
●

●
●

●●
●

●
●

● ●●

● ●●
●

●

● ● ●● ●●

●
●

●
●● ●

●●

●

●

●
●●

●

●
●●

●

●

●●

●
●

●●

●

●

●

●
●●●

●
● ●●●

● ●

●
●

●

●
●● ●

●
● ●

●

●
●●

●

● ●
●

●
●

●

●
●●

●
●

●

●

●●● ●

●

●

●

●

● ●

● ●
●

●

●

●
●●●

●●

●

●

●
●

●
● ●

●●●
●
●

●

●●

●

●
●

●

●●

●

●
●●

●
●

● ●● ●
●

●

●●

●
●
● ●●

●●
●

●

●●
●

●

●
●

● ●
●● ●

●

●
●●●

●●
●

●●
●

●
●

● ●

●●

●
●●

●●●
●

●
●

● ●● ●

●
●● ●

●

●
●

●

●

●

●●
●

●

●
● ●

●

●
● ●●

●
●

●

●●
●

●
●

●●
●

●

●●● ●●

●●

●
●

●
●●

●

●

●

● ●

●

●●

●
●

●
●

● ●●
●

●

●●
●

●

● ●● ●●●
●
●

●
●

●●
●●

●●
●

●

● ●●● ●●
●

●
●●●● ●

●●

●
●

●
●●

●●
●●

●●
●

●● ●

●
●

●●
●

●
●

●

●●

● ●●
●●

●

●
●

●

●

●

●
●

● ●

●

●

●
●●●

●

●

●●●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●
●● ●

●

●

●

●
●

●
●

●

●

●
●

●
●

●● ●●● ●
●

● ●
●

●

●

●

●

●●
●
●

● ●

●

●

●
●●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●●

●●

●●● ●

●

●

●
●●

●● ●
●

●
●

●

●●

●

●
●●

●

●
●

●

●
●

●
●

●●
●●

●
●

●
● ●● ●

●

●

●

●●●

●●● ●●●
●●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●
●

●

●

● ●
●

●●
● ●●

●
●

●

●
●

● ●
●● ●

●
●●

● ●
●

●
●

●

●

●
● ●

●
●● ●●

●

●
●

●●●

●

●●

●
●● ●●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●●

● ●
●●

●

●●
●

●
●●

●
●

●

●
●

●

●

●

●●

●

●
●

● ●●
●

●

●●
●

●●

●
●

●

●
●

●

●
●

●
●

●●
● ●

●●
●

●●

●

●

●●
●

●

●
●

●

●
●●

●●

●

●●

●
●

●
●

●
●

●

●

●

●
● ●

●●

●●●

●
●●

●
●

● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●
● ●●

●
●

●

● ●●

●
●

●
●

●●●●
●●

●

● ●

●

●

●
●

● ●
●

●●

●

●

●
●●

●

●

●

●

●
●

● ●●
●● ●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

● ●

●●

●

●
● ●●● ●

●
●

●● ●
●
●
●

●
●●

●
●

●
●

●

●

●

●

●

●
●

● ●●
●

●
● ●

●●
●

●
●

●

●

●
●

● ●

●
●

●

● ●

●
●

●

●●

●

●●
●

●
●

● ●

●
●

●

●
●

●
●

●

●
● ● ●

●

●

●●

● ●

●

●
●●

●

●
●●

●

●

●
● ●●

●

●●

●●●

●
●

●
●

●

●
●

●

●
●●

●
●

●
●

●
●

●
●●
●● ●

● ●● ●

●

●
●

●● ●
●

●

●
●

●

●

●

●

●
●

●
●

● ●
●

●

●
●● ●

●

● ●●
●

●

● ●

●
● ●●

●

●

●

●

●

●
●

●●

●●● ●●
●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●●

●
●

● ●
●●

●
●

●
●●● ●

●
●

●
●

●●
●●

●

●

●

●
● ● ●

●
●

●

●●
●

●
●●●

● ●●

●●

●

●

●

●
●

●●

●●

●

●

●●●
●

●●

●

●

●

●
●

●● ●

●
●

●●●
●

●
●●

● ●●

●●
●

●

●
●

●

●
● ●

●
●

● ●

●

●
●
●

● ●

●●
●

●
●

● ●
●

●
●● ●

●●

●
●

●
●

●

●●
●●

●

●

●
●

●●
● ●

●

●

●

●

●

● ● ●● ●
●

●

●

●
●

●

●

●

●
●

●●

●

●●

●
●

●

●
●

●
●
●●

●
●

●●
●

●

●

●

●

●

●

●

●
●

● ●●
● ●

●

●
●●

●●

●
● ●

●

●

●
●
● ●

●

●

● ●
●

● ●
●

●
●
●

●●

●

● ●
●

●

●
●

●

●●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●●
●

●

●●
●

●

●● ●
●

●

●●

●

●
●●

●
●
●● ●

●

● ●●●●

●

●
● ●

●●

●
●

●

●

●●
●● ●●●

●
●

● ●

●
● ●

●●
●

●●
●

● ●
●● ●

●●
● ●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

●

●

●● ●●
●●
●● ●

●

●
●●

● ●
●

●
● ●

●
●

●●● ●
●●

●

●
●

●●
●

●

●
●●●

●

●
● ●●
●●

●

●●
●

●

●

●●●●
●

●

● ●

●
●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●●
●

●
●
●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●●

●●● ● ●
●

●

●●●
●●

●●
●

●

●

●●
●

●
● ●

●●
●
●

●●

●
●

●

● ●
● ●●●

● ●

●

●●
●●

●

●

●
●

●●
●

●
●●

●

●
●

●
●

●

●
●

●●

●●

●

●

● ●

●

●

●

● ●

●

●
●●

●

●
●

●
●

●●

●

●

●
●

●
●

●
●●

●

●
●

● ●●
● ● ●

● ●●

●

● ●●
●

●

●

●

The multidimensional scaling recovery is the same as the principal
component scores UD ∈ R2000×3. This is the same as X up to an
orthonormal transformation—recall that UD = XV

9

Beyond Euclidean distance

If the ∆ij were actual Euclidean distances between the rows of a
centered matrix X ∈ Rn×p, we get back the first k principal
component scores exactly. Importantly, multidimensional scaling
can be applied to any ∆ij , not just Euclidean distances

There is a class of methods which construct a fancier metric ∆ij

between high-dimensional points x1, . . . xn ∈ Rp, and then they
feed these ∆ij through multidimensional scaling to get a
low-dimensional representation z1, . . . zn ∈ Rk. In this case, we
don’t just get principal component scores, and our low-dimensional
representation can end up being a nonlinear function of the data

Why would we want to use non-
Euclidean distances?

10

Tangent distance

Tangent distance is an example of a fancier metric that we can run
through multidimensional scaling (though used elsewhere too)

A motivating example is the digit data. Here, we have 16 × 16
images, treated as points xi ∈ R256 (i.e., they are unraveled into
vectors). If we take, e.g., a “3” and rotate it through a small angle,
we would like for the rotated image to be considered close to the
original image. This is not neccessarily true of Euclidean distance

We could define ∆rotation
ij to be the shortest Euclidean distance

between a rotated version of xi and rotated version of xj . What’s
the problem with this? (Hint: think about rotating a “6”)

11

Rotations define a curve

Two problems with ∆rotation
ij : hard to calculate, and allows for too

large of a transformation. We need something easier to calculate,
and that restricts attention to small rotations

It helps to think of a set of rotations of an image as defining a
curve in Rp—an image xi is a point in Rp, and as we rotate it in
either directions, we get a curve

In this perspective:

I Rotation distance ∆rotation
ij is the shortest Euclidean distance

between the two curves generated by rotating xi and xj
I Tangent distance ∆tangent

ij is defined by first computing the
tangent line to each curve at the observed image, and then
using the shortest Euclidean distance between tangent lines

Using tangent distance remedies both problems above. (Why?)

12

Illustration of rotation curve and tangent

(From ESL page 473)
13

Illustration of tangent distance

(From ESL page 474)
14

Example: handwritten digits

Example: n = 1220 images of handwritten digits and p = 256, i.e.,
each image is 16 × 16 pixels. Left plot: first two multidimensional
scaling dimensions using Euclidean distances (principal component
directions), right plot: using tangent distances

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
●

●

●●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

● ●● ●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−5 0 5 10

−
10

−
5

0
5

Euclidean distance

MDS dimension 1

M
D

S
 d

im
en

si
on

 2

●

●

5
6

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

● ●

●

●

●

●

●
●

●●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−5 0 5

−
5

0
5

10

Tangent distance

MDS dimension 1

M
D

S
 d

im
en

si
on

 2

●

●

5
6

15

Isometric feature mapping

Isometric feature mapping1 (Isomap) learns structure in a more
general setting to define distances. The basic idea is to construct a
graph G = (V,E), i.e., construct edges E between vertices
V = {1, . . . n}, based on the structure between x1, . . . xn ∈ Rp.

Then we define a graph distance ∆Isomap
ij between i and j, and use

multidimensional scaling for our low-dimensional representation

(From Tenenbaum et al. (2000))

1Tenenbaum et al. (2000), “A global geometric framework for nonlinear
dimensionality reduction”

16

The Isomap graph distances

Constructing the graph: for each pair i, j, we connect i, j with an
edge if either:

I xi is one of xj ’s m nearest neighbors, or

I xj is one of xi’s m nearest neighbors

The weight of this edge e = {i, j} is then we = ‖xi − xj‖2

Defining graph distances: now that we have built a graph, i.e., we
have built an edge set E, we define the graph distance ∆Isomap

ij

between xi and xj to be the shortest path in our graph from i to j:

∆Isomap
ij = min

paths P ⊆ E
from i to j

∑
e∈P

we

(This can be computed by, e.g., Dijkstra’s algorithm or Floyd’s
algorithm)

17

Example: hand positions
Example: n = 3000 images of hands and p = 4096, i.e., each
image is 64 × 64 pixels. Isomap applied with m = 6 nearest
neighbors, reduced to k = 2 dimensions:

(From http://isomap.stanford.edu/handfig.html)
18

http://isomap.stanford.edu/handfig.html

Local linear embedding

Local linear embedding2 (LLE) is a similar method in spirit but its
details are very different. It doesn’t use multidimensional scaling

The basic idea has two steps:

1. Learn a bunch of local approximations to the structure
between x1, . . . xn ∈ Rp

2. Learn a low-dimensional representation z1, . . . zn ∈ Rk that
best matches these local approximations

What is meant by such local approximations? We simply try to
predict each xi by a linear function of nearby points xj (hence the
name local linear embedding)

2Roweis et al. (2000), “Nonlinear dimensionality reduction by locally linear
embedding”

19

Using weights to linearly predict the local structure

For each xi ∈ Rp, we first find its m nearest neighbors, and collect
their indices as N (i). Then we build a weight vector wi ∈ Rn,
setting wij = 0 for j /∈ N (i) and fitting wij for j ∈ N (i) by
minimizing ∥∥∥xi − ∑

j∈N (i)

wijxj

∥∥∥2
2

Finally, we take these weights w1, . . . wn ∈ Rn and we fit the
low-dimensional representation z1, . . . zn ∈ Rk, by minimizing

n∑
i=1

∥∥∥zi − n∑
j=1

wijzj

∥∥∥2
2

20

Illustration of local linear embedding

(From Roweis et al. (2000))
21

Example: facial expressions
Example: n = 2000 images of faces and p = 560, i.e., each image
is 20 × 28 pixels. Local linear embedding applied with m = 12
nearest neighbors, reduced to k = 2 dimensions:

(From Roweis et al. (2000)) 22

Multidimensional scaling and Isomap in R

Recall that multidimensional scaling can be computed directly from
the distances matrix ∆, and an eigendecomposition. E.g.,

A = -1/2*Delta^2

B = scale(A-rowMeans(A), center=T, scale=F)

e = eigen(B)

Z = e$vectors %*% diag(sqrt(e$values))

Isomap is implemented by the function isomap in the package
vegan. E.g.,

k = 2 # Number of dimensions in reduced representation

m = 8 # Number of nearest neighbors to consider

iso = isomap(Delta, ndim=k, k=m)

23

Recap: nonlinear dimension reduction

We learned (classical) multidimensional scaling which, given a
distance matrix ∆ ∈ Rn×n between unknown points x1, . . . xn,
computes a low-dimensional representation of these points
z1, . . . zn ∈ Rk

If x1, . . . xn ∈ Rp and ∆ij = ‖xi − xj‖2, then the low-dimensional
representation returned by multidimensional scaling exactly
corresponds to the first k principal component scores of X ∈ Rn×p

(whose ith row is xi)

But multidimensional scaling can be applied to more general
distance measures ∆ij than just Euclidean distance, therefore
achieving a nonlinear dimension reduction. Two such examples are
tangent distance and the graph distance defined by Isomap

Local linear embedding is a different nonlinear technique in which
we locally approximate the structure, and find a low-dimensional
representation that fits these approximations

24

Next time: canonical correlation analysis

Finding pairs of directions that explain covariance between two
sets of variables

α1 =

(
2.770
5.517

)
mechanics

vectors
, β1 =

 8.782
0.860
0.370

 algebra
analysis
statistics

,

ρ1 = 0.663

●

●

●

●
●

●

●
●

● ●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

● ●●
●●

●

● ●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5 0.6

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Xα1

Y
β 1

25

