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Review: correlation

Given two random variables X, Y € R, the (Pearson) correlation
between X and Y is defined as

Cov(X,Y)
Cor(X,Y) =
( ) v/ Var(X)+/Var(Y)
Recall that
Cov(X,Y) = E[(X — E[X])(Y - E[Y])]
and

Var(X) = E[(X — E[X])?] = Cov(X, X)

This measures a linear association between X,Y. Properties:
» —1 < Cor(X,Y) <1
» X,Y independent = Cor(X,Y) = 0 (Homework 2)

» Cor(X,Y) =0 # X,Y independent (Homework 2) «—

More on this later ...




Review: sample correlation

Given centered z,y € R™, the sample correlation between x and y
is defined as
'ty

VaTz\/yTy

Note the analogy to the definition on the last slide—we just
replace everything by its sample version. l.e., if we write cov and
var for the sample covariance and variance, then

cor(z,y) =

cov(z,y)

\/var(z) \/var(y) .
T

Note: if z,y € R™ are centered unit vectors then cor(z,y) = z"y

cor(z,y) =

This measures a linear association between z,y. Properties:
» —1 < cor(z,y) <1 A X

&

o

» cor(z,y) =0 <= z,y are orthogonal 5
| ]




Canonical correlation analysis

Principal component analysis attempts to answer the question:
“which directions account for much of the observed variance in a
data set?” Given a centered matrix X € R™*P we first find the
direction v1 € RP to maximize the sample variance of Xv:

v; = argmax var(Xwv)
lvll2=1

Canonical correlation analysis is similar but instead attempts to
answer: “which directions account for much of the covariance
between two data sets?’ Now we are given two centered matrices
X e R*"P, Y € R™*9, and we seek the two directions a1 € RP,
B1 € R? that maximize the sample covariance of Xa and Y 53:

o1, P = argrax cov(Xa,I;@/ cw(}(@’@f@)

|Xofl2=1, [[¥ B]l2=1

Subject to the constraints, this is equivalent to maximizing
cor(Xa,YB). (Why?)




Canonical directions and variates

The first canonical directions a1 € RP, 31 € RY? are given by

7 czlﬂ- ;
a, ;81 — argmax (XOK)T(YB) EX . fb ( }”?J
el el TR

. . ST (yf’L: T
Vectors Xaq,Y 81 € R™ are called the first canonical variates, and) (Ye0)

p1 = (Xa1)T(YB1) € Ris called the first canonical correlation

Given the first kK — 1 directions, the kth canonical directions
ar € RP, B, € R? are defined as

g, B = argmax (Xa)(YB)
[ Xallz=1, [[Y 8]l2=1 |
(X))t (Xea;)=0, j=1,..k—1 VA V=0
(YB)T(Y B;)=0, j=1,..k—1 P

Vectors Xayg,Y B € R™ are called the kth canonical variates, and
pr = (Xap) (Y B:) € Ris called the kth canonical correlation
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Example: scores data

Example: n = 88 students took tests in each of 5 subjects:
mecha:_nics, vectors, algebra, analysis, statistics. (From Mardia et
al. (1979) "Multivariate analysis”.) Each test is out of 100 points

The tests on mechanics, vectors were closed book and those on
algebra, analysis, statistics were open book. There's clearly some
correlation between these two sets of scores:

alg ana  sta
mec 0.547 0.409 0.389
vec 0.610 0.485 0.436

Canonical correlation analysis attempts to explain this phenomenon
using the variables in each set jointly. Here X contains the closed
book test scores and Y contains the open book test scores, so

X € R3*2 and Y € R3¥8*3




The first canonical directions (multiplied by 10°):

2.770 mec 8.782 alg
a1 =\ g7 vec B =1 0.860 ana
' 0.370 sta

The first canonical correlation is p; = 0.663, and the variates:
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The second directions are more surprising, but pa = 0.041




How many canonical directions are there?

We have X € R" P and Y € R™*?. How many pairs of canonical
directions (a1, f1), (o, B2), ... are there?

We know that any n orthogonal (linearly independent) vectors in
R™ form a basis for R™. Therefore there cannot be more than p
orthogonal vectors of the form X«, o € RP, and ¢ orthogonal
vectors of the form Y3, § € R?. (Why?)

Hence there are exactly r = min{p, ¢} canonical directions

(0517/81)9-'-(05?"7/8?")1

'This is assuming that n > p and n > q. In general, there are actually only
r = min{rank(X), rank(Y )} canonical directions




Transforming the problem

If A e RP*P B € R?*? are invertible, then computing

&1, B = argmax (XA&a)T (Y Bp),
|XAd|2=1, [Y BB||2=1

is equivalent to the first step of canonical correlation analysis. In
particular, the first canonical directions are given by a; = Aéy and
B1 = BB1. The same is also true of further directions

l.e., we can transform our data matrices to be X = XA, Y =YB
for any invertible A, B, solve the canonical correlation problem

ot

with X, Y, and then back-transform to get our desired answers

Why would we ever do this? Because there is a transformation
A, B that makes the computational problem simpler




Sphering

For any symmetric invertible matrix A € R™*"™, there is a matrix
A2 ¢ R™™ called the (symmetric) square root of A, such that
AL/2 A1/2 A

We write the inverse of A2 as A=1/2. Note A~1/244- Y2 =T
(Why?)

Given centered matrices X € R™*P and Y € R"™*9.2 we define
Vy = X1 X € RP*P and Vi =YY € R9%4. Then

X=XV e RV and ¥ =YV, /% € R

are called the sphered versions of X and Y .3 Note that the sample
covariance of X and Y is

~ s~

cov(X)=1/n and cov(Y)=1/n

*Here we are assuming that rank(X) = p and rank(Y) = ¢
3Alternatively, for sphering we would sometimes define Vx = (XT X)/n and
Vy = (YTY)/n, so that the transformed sample covariances are exactly I
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Transforming the problem (continued)

As suggested by the previous slide, we will take X = XVy —1/2 and

Y = YVY_UZ, and we'll solve the problem

a,fpr= argmax (X&)(YH)
IXal2=1, ||YBll2=1

Recall that then ay =V /2&1 and 51 = _1/2ﬁ1

So why is this simpler? Note that the constraint says
1= (Xa)"(Xa) =a"vy ’XTxvy?a=a"a

e., ||@||2 = 1. Similarly, ||3]|2 = 1. Hence our problem can be
rewritten as: 5 .
a1, 1 =  argmax &l Mps
&llz=1, [|B]l2=1
SR —1/2 T —1/2 X -
where M = X*Y =V, """ XYV, € RP*9. The same is true
for further directions
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Computing canonical directions and variates

Now comes the singular value decomposition to the rescue
(again!). Let r = min{p, ¢}. Then we can decompose

M =UDV"T

where U € RP*", V € R?*" have orthonormal columns, and
D = diag(dy,...d,) € R™*" with dy > ... > d, > 0. Further:

» The transformed canonical directions &1, ...a&, € R? and
Bi,...Br € RY are the columns of U and V respectwely

» The canonical directions a1,...a, € RP and [1,...5, € R?
are the columns of V};l/QU and VY—UQV, respectively;

» the canonical variates Xaq,... Xa, € R™ and
YB31,...Y3. € R™ are the columns of XV§1/2U c R™*" a

YVQI/QV € R™*", respectively

» The canonical correlations p1 > ... > p, are equal to
d; > --- > d,, the diagonal entries of D

nd

12




Example: olive oil data

Example: n = 572 olive oils, with p = 9 features (the olives data
set from the R package classifly):
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Variable 1 takes values in {1, 2,3}, indicating the region (in Italy)
of origin. Variables 2-9 are continuous valued and measure the
percentage composition of 8 different fatty acids
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We are interested in the correlations between the region of origin
and the fatty acid measurements. Hence we take X € R??*8 to
contain the fatty acid measurements, and Y € R??%3 to be an
indicator matrix, I.e., each row of Y indicates the region with a 1
and otherwise has 0s. This might look like:

1 0

O O O

vo| o
0
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(In this case, canonical correlation analysis actually does the exact
same thing as linear discriminant analysis, an important tool that
we will learn later for classification)
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The first two canonical X variates, with the points colored by
region:
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Canonical correlation analysis in R

Canonical correlation analysis is implemented by the cancor
function in the base distribution. E.g.,

cc = cancor(x,y)
alpha = cc$xcoef
beta = cc$ycoef

rho = cc$cor

‘xvars = X %*} alpha
yvars = y %*) beta
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Recap: canonical correlation analysis

In canonical correlation analysis we are looking for pairs of
directions, one in each of the feature spaces of two data sets
X € R"*PY € R™*4, to maximize the covariance (or correlation)

We defined the pairs of canonical directions (a1, 1), ... (., Br),
where 7 = min{p, ¢}, and a; € RP, 5; € R?. We also defined the
pairs of canonical variates (Xay, X51),...(Xay, XB;), where
Xaj; € R" and X3; € R™. Finally, we defined the canonical

correlations p1,...pr € R

We saw that transforming the problem leads to a simpler form.
From this simpler form we can compute the canonical directions,
correlations, and variates using the singular value decomposition
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Detecting Novel Assoeiations

in Large Data Sets
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Next time: measures of correlation

A lot of work has been done, but there's still a lot of interest
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