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Review: correlation

Pearson’s correlation is a measure of linear association

In the population: for random variables X,Y ∈ R,

Cor(X,Y ) =
Cov(X,Y )√

Var(X)
√

Var(Y )

In the sample: for vectors x, y ∈ Rn,

cor(x, y) =
cov(x, y)√

var(x)
√

var(y)
=

(x− x̄1)T (y − ȳ1)

‖x− x̄1‖2‖y − ȳ1‖2

If x, y are have been centered, then

cor(x, y) =
xT y

‖x‖2‖y‖2
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Review: properties of population correlation

Recall: Cor(X,Y ) = Cov(X,Y )/
(√

Var(X)
√

Var(Y )
)

Properties of Cor:

1. Cor(X,X) = 1

2. Cor(X,Y ) = Cor(Y,X)

3. Cor(aX + b, Y ) = sign(a)Cor(X,Y ) for any a, b ∈ R
4. −1 ≤ Cor(X,Y ) ≤ 1, with Cor(X,Y ) > 0 indicating a

positive (linear) relationship, < 0 indicating a negative one

5. |Cor(X,Y )| = 1 if and only if Y = aX + b for some a, b ∈ R,
with a 6= 0

6. If X,Y are independent then Cor(X,Y ) = 0

7. If Cor(X,Y ) = 0 then X,Y need not be independent

8. If (X,Y ) is bivariate normal and Cor(X,Y ) = 0, then X,Y
are independent
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Bivariate normal distribution

Assume that the random vector Z = (X,Y ) ∈ R2 has a bivariate
normal distribution, Z ∼ N(µ,Σ), where µ ∈ R2 and Σ ∈ R2×2,

µ =

(
µX
µY

)
, Σ =

(
σ2X ρσXσY

ρσXσY σ2Y

)
Note that we have E[X] = µX , E[Y ] = µY , Var(X) = σ2X ,
Var(Y ) = σ2X , Cov(X,Y ) = ρσXσY , and Cor(X,Y ) = ρ

The density of Z = (X,Y ) is

fX,Y (z) =
1

2π
√

det(Σ)
exp

(
− 1

2
(z − µ)TΣ−1(z − µ)

)

Fact: ρ = 0 implies that X,Y are independent (Homework 3)
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Review: properties of sample correlation

Recall: cor(x, y) = (x− x̄1)T (y − ȳ1)/
(
‖x− x̄1‖2‖y − ȳ1‖2)

Properties of cor:

1. cor(x, x) = 1
2. cor(x, y) = cor(y, x)
3. cor(ax+ b, y) = sign(a)cor(x, y) for any a, b ∈ R
4. −1 ≤ cor(x, y) ≤ 1, with cor(x, y) > 0 indicating a positive

(linear) relationship, < 0 indicating a negative one
5. |cor(x, y)| = 1 if and only if y = ax+ b for some a, b ∈ R,

with a 6= 0
6. cor(x, y) = 0 if and only if x, y are orthogonal
7. If x, y are centered then cor(x, y) = cos θ, where θ is the

angle between the vectors x, y ∈ Rn

cos θ =
xT y

‖x‖2‖y‖2

●

●

●

θ

x

y
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Examples: sample correlation

Perfect linear Noisy linear
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Independent Ball
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Perfect cubic Outliers
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Rank correlation

Spearman’s rank correlation is only defined in the sample. It goes
beyond linearity, and measures a monotone association between
x, y ∈ Rn

Given vectors x, y ∈ Rn, we first define the rank vector rx ∈ Rn

that ranks the components of x, e.g., if x = (0.7, 0.1, 1) then
rx = (2, 1, 3). We also define the ranks ry based on y. Rank
correlation is now the usual (sample) correlation of rx and ry:

rcor(x, y) = cor(rx, ry)

Key property: |rcor(x, y)| = 1 if and only if there is a monotone
function f : R→ R such that yi = f(xi) for each i = 1, . . . n
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Examples: rank correlation

Perfect linear Noisy linear
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Independent Ball
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Perfect cubic Outliers
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Perfect quadratic Perfect circle
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Maximal correlation

Maximal correlation1 is a notion of population correlation. It has
no preference for linearity or monotonicity, and it characterizes
independence completely

Given two random variables X,Y ∈ R, the maximal correlation
between X,Y is defined as

mCor(X,Y ) = max
f,g

Cor(f(X), g(Y ))

where the maximum is taken over all functions2 f, g : R→ R.
Note that 0 ≤ mCor(X,Y ) ≤ 1

Key property: mCor(X,Y ) = 0 if and only if X,Y are
independent

1Gebelein (1947), “Das Statitistiche Problem Der Korrelation...”; Renyi
(1959), “On Measures of Dependence”

2Actually, f, g have to be such that Var(f(X)) > 0,Var(g(Y )) > 0
14



Review: independence

Two random variables X,Y ∈ R are called independent if for any
sets A,B ⊆ R

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

If X,Y have densities fX , fY , and (X,Y ) has a density fX,Y , then
this is equivalent to

fX,Y (s, t) = fX(s)fY (t)

for any s, t ∈ R. In other words, the joint density is the product of
the marginal densities

Important fact: if X,Y are independent, then for any functions
f, g, we have E[f(X)g(Y )] = E[f(X)]E[g(Y )]

Hence X,Y independent implies that Cor(f(X), g(Y )) = 0 for
any functions f, g, which means mCor(X,Y ) = 0
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Review: characteristic functions

The characteristic function of a random variable X ∈ R is the
function hX : R→ C defined as

hX(t) = E[exp(itX)]

The characteristic function of a random vector (X,Y ) ∈ R2 is
hX,Y : R2 → C,

hX,Y (s, t) = E
[

exp
(
i(sX + tY )

)]
Characteristic functions completely characterize the distribution of
a random variable (hence the name). I.e., if hX(t) = hX′(t) for
every t ∈ R, then X and X ′ must have the same distribution

Important fact: X,Y are independent if and only if
hX,Y (s, t) = hX(s)hY (t) for any s, t ∈ R. In other words, the joint
characteristic function is the product of the marginal ones
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Zero maximal correlation implies independence

Suppose that mCor(X,Y ) = 0. Then taking3 f(X) = exp(isX)
and g(Y ) = exp(itY ) we have

Cor(exp(isX), exp(itY )) = 0

This means that

Cov(exp(isX), exp(itY )) = 0

i.e.,
E[exp(isX) exp(itY )] = E[exp(isX)]E[exp(itY )]

This holds for each s, t ∈ R, so X,Y are independent

3Strictly speaking, f, g are supposed to take values in R (not C), but to get
around this we can write exp(iθ) = cos θ + i sin θ and then break things up into
real and imaginary parts
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Maximal correlation in the sample

Given two vectors x, y ∈ Rn, and functions f, g : R→ R, write
f(x) ∈ Rn for the vector with ith component f(xi), i.e.,
f(x) = (f(x1), . . . f(xn)), and similarly for g(y)

We’d like to define maximal correlation in the sample, analogous
to its population definition (so that we can use it in practice!).
Consider

mcor(x, y) = max
f,g

cor(f(x), g(y))

There’s a big problem here—as defined, mcor(x, y) = 1 for any
x, y ∈ Rn. (Why?)

We’ll derive an algorithm to compute mCor in the population.
This inspires an algorithm in the sample, and the sample version
mcor is then defined as the output of this algorithm
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Fixed points of maximal correlation

We define a norm on random variables Z ∈ R by ‖Z‖ =
√

E[Z2]

Given any function f , we can always make f(Z) have the following
properties:

I E[f(Z)] = 0, by letting f(Z)← f(Z)− E[f(Z)] (centering)

I ‖f(Z)‖ = 1, by letting f(Z)← f(Z)/‖f(Z)‖ (scaling)

Notice that for such an f , we have Var(f(Z)) = ‖f(Z)‖ = 1

Therefore, when computing maximal correlation, we can restrict
our attention to functions f, g such that E[f(X)] = E[g(Y )] = 0
and ‖f(X)‖ = ‖g(Y )‖ = 1. (Otherwise, we simply center and
scale as needed, and this doesn’t change the correlation.) Hence

mCor(X,Y ) = max
E[f(X)]=E[g(Y )]=0
‖f(X)‖=‖g(Y )‖=1

E[f(X)g(Y )]
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Now notice that for such f, g,

E[(f(X)− g(Y ))2] = E[f2(X)] + E[g2(Y )]− 2E[f(X)g(Y )]

= 2− 2E[f(X)g(Y )]

and hence f, g are optimal functions for mCor if and only if they
are also optimal for the minimization problem

min
E[f(X)]=E[g(Y )]=0
‖f(X)‖=‖g(Y )‖=1

E[(f(X)− g(Y ))2]

Key point: consider just minimizing over the function g (assuming
that f is fixed and satisties E[f(X)] = 0 and ‖f(X)‖ = 1). To do
so, we can minimize the conditional expectation

E[(f(X)− g(y))2|Y = y]

for each fixed y. And to minimize this over g(y), we simply take
g(y) = E[f(X)|Y = y]

As a function over Y , this is written as g(Y ) = E[f(X)|Y ]

20



Remember though, that we are restricting g to have expectation
zero and norm one. Therefore we let

g(Y ) = E[f(X)|Y ]/‖E[f(X)|Y ]‖

(Check: this satisfies both properties)

The exact same arguments, but in reverse, show that minimizing
over f for fixed g yields

f(X) = E[g(Y )|X]/‖E[g(Y )|X]‖

These are called the fixed point equations of the maximal
correlation problem. That is, if there exists f, g that achieved the
maximum mCor(X,Y ) = E[f(X)g(Y )], then they must satisfy
the above equations
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Alternating conditional expectations algorithm

The alternating conditional expectations (ACE) algorithm4 is
motivated directly from these fixed point equations. The idea is
just to start with a guess at one of the functions, and then iterate
the two equations until convergence

ACE algorithm:

I Set f0(X) = (X − E[X])/‖X − E[X]‖
I For k = 1, 2, 3, . . .

1. Let gk(Y ) = E[fk−1(X)|Y ]/‖E[fk−1(X)|Y ]‖
2. Let fk(X) = E[gk(Y )|X]/‖E[gk(Y )|X]‖
3. Stop if E[fk(X)gk(Y )] = E[fk−1(X)gk−1(Y )]

I Upon convergence, mCor(X,Y ) = E[fk(X)gk(Y )]

This has been proven to converge under very general assumptions

4Breiman and Friedman (1985), “Estimating Optimal Transformations for
Multiple Regression and Correlation”
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Back to maximal correlation in the sample

Given x, y ∈ Rn. As in the population case, if we are considering
cor(f(x), g(y)) over all functions f, g, we can restrict out attention
to functions f, g with

1T f(x) = 1T g(y) = 0 and ‖f(x)‖2 = ‖g(y)‖2 = 1

where now ‖ · ‖2 is the usual Euclidean norm. For such functions
f, g, we have cor(f(x), g(y)) = f(x)T g(y). Further,

‖f(x)− g(y)‖22 = ‖f(x)‖22 + ‖g(y)‖22 − 2f(x)T g(y)

= 2− 2f(x)T g(y)

for such functions f, g, so maximizing cor(f(x), g(y)) is the same
as minimizing ‖f(x)− g(y)‖22

We’re going to derive a sample version of the ACE algorithm to
approximately minimize ‖f(x)− g(y)‖22, and then we define its
output as the sample maximal correlation
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The ACE algorithm in the sample

We define the ACE algorithm analogously to its definition in the
population case. That is, we repeat iterations of the form

g(y) = condexp[f(x)|y], center and scale g(y),

f(x) = condexp[g(y)|x], center and scale f(x),

where condexp[ · |x] denotes a sample version of the conditional
expectation on x, and similary for condexp[ · |y]

A good question is: how do we compute these sample conditional
expectations? (There’s not a simple convenient sample analog like
there is for unconditional expectation, variance, or covariance)

Answer: use a smoother S. We use the notation S(y|x) to mean
that the result is an estimate for y = (y1, . . . yn) as a function of
x = (x1, . . . xn)
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A smoother S(y|x) could be, e.g., something as simple as a
histogram or linear regression. It could also be something more
fancy like kernel regression or local linear regression. (We’ll see
examples of smoothers later in the course)
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Assume that we’ve picked a smoother S to use in the ACE
algorithm. (We’d like a smoother that can fit very general shapes
of functions, i.e., not just a histogram or linear regression)

ACE algorithm:
I Set f0(x) = (x− x̄1)/‖x− x̄1‖2
I For k = 1, 2, 3, . . .

1. Let G(y) = S(fk−1(x)|y), and center and scale,

gk(y) = (G(y)−G(y)1)/‖G(y)−G(y)1‖2
2. Let F (x) = S(gk(y)|x), and center and scale,

fk(x) = (F (x)− F (x)1)/‖F (x)− F (x)1‖2
3. Stop if |fk(x)T gk(y)− fk−1(x)T gk−1(y)|2 is small

I Upon convergence, define mcor(x, y) = fk(x)T gk(y)

Unforunately, the ACE algorithm in the sample is only guaranteed
to converge under some restrictive conditions. But in practice, it
still tends to perform quite well
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Measures of correlation in R

The cor function available in the base R distribution can be used
to compute (Pearson’s) correlation, and also (Spearman’s) rank
correlation. E.g.,

cor(x, y) # default is method="pearson"

cor(x, y, method="spearman") # rank correlation

The function ace in the package acepack implements the
alternating conditional expectations algorithm to compute
maximum correlation. E.g.,

a = ace(x, y)

cor(a$tx, a$ty) # maximal correlation

Note: this ace implementation doesn’t scale the vectors in the way
that discussed in class, so the maximal correlation is not simply
sum(a$tx * a$ty)
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Recap: measures of correlation

In this lecture we reviewed the basic facts about correlation, both
in the population (random variables) and in the sample (vectors).
If random variables X,Y ∈ R are jointy normal, then independence
and uncorrelatedness are the same thing

Rank correlation is simply the usual sample correlation, except
replacing vectors x, y ∈ Rn with the ranks of their components
rX , rY ∈ Rn. This aims to capture monotone associations that are
not necessarily linear

Maximal correlation is defined in the population as the maximum
correlation over functions of our two random variables. The
maximal correlation equals zero if and only if the random variables
are independent

The alternating conditional expectations (ACE) algorithm is an
elegant way to compute maximal correlation in the population, and
furthermore, it allows to define maximal correlation in the sample

28



Next time: more measures of correlation

More about maximal correlation; distance correlation
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