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Linear regression is an old topic

Linear regression, also called the method of least squares, is an old
topic, dating back to Gauss in 1795 (he was 18!), later published
in this famous book:

You have all seen linear regression before and a rigorous treatment
of how to make inferences from a linear model, we won’t repeat
that here. The goal is to present some different perspectives on
linear regression that are (hopefully) new. We’ll start by reviewing
the basics
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Review: univariate regression

Suppose that we have observations y = (y1, . . . yn) ∈ Rn, and we
want to model these a linear function of x = (x1, . . . xn) ∈ Rn.
The univariate linear regression coefficient of y on x is

β̂ =

∑n
i=1 xiyi∑n
i=1 x

2
i

=
xT y

‖x‖22

This value β̂ ∈ R is optimal in the least squares sense:

β̂ = argmin
β

n∑
i=1

(yi − βxi)2 = argmin
β
‖y − βx‖22.

We often think of the observations y as coming from the model

y = β∗x+ ε

where x ∈ Rn are fixed (nonrandom) measurements, β∗ ∈ R is
some true coefficient, and ε = (ε1, . . . εn) ∈ Rn are errors with
E[εi] = 0, Var(εi) = σ2, Cov(εi, εj) = 0
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We can also add an intercept term to the linear model:

y = β∗0 + β∗1x+ ε

Again we estimate β̂0, β̂1 using least squares,

β̂0, β̂1 = argmin
β0,β1

n∑
i=1

(yi − β0 − β1xi)2 = argmin
β0,β̂1

‖y − β01− β1x‖22

giving

β̂0 = ȳ − β̂1x̄, β̂1 =
(x− x̄1)T (y − ȳ1)

‖x− x̄1‖22
Notice that

β̂1 =
cov(x, y)

var(x)
= cor(x, y)

√
var(y)

var(x)
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Review: multivariate regression

Now suppose that we are considering y ∈ Rn as a function of
multiple predictors X1, . . . Xp ∈ Rn. We collect these predictors
into columns of a predictor matrix X ∈ Rn×p. We assume that
X1, . . . Xp are linearly independent,1 so that rank(X) = p

Our model:
y = Xβ∗ + ε

where X ∈ Rn×p is considered fixed, β∗ = (β∗1 , . . . β
∗
p) ∈ Rp are

the true coefficients, and the errors ε = (ε1, . . . εn) ∈ Rn are as
before (i.e., satisfying E[ε] = 0 and Cov(ε) = σ2I)

For an intercept term, we can just append a column 1 ∈ Rn of all
1s to the matrix X

1Note that this necessarily implies that p ≤ n
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We estimate the coefficients β̂ ∈ Rp by least squares:

β̂ = argmin
β∈Rp

‖y −Xβ̂‖22

This gives
β̂ = (XTX)−1XT y

(Check: does this match the expressions for univariate regression,
without and with an intercept?)

The fitted values are

ŷ = Xβ̂ = X(XTX)−1XT y

This is a linear function of y, ŷ = Hy, where H = X(XTX)−1XT

is sometimes called the hat matrix
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Review: projection matrices

Let L ⊆ Rn be a linear subspace, i.e., L = span{v1, . . . vk} for
some v1, . . . vk ∈ Rn. If V ∈ Rn×k contains v1, . . . vk on its
columns, then

span{v1, . . . vk} = {a1v1 + . . .+ akvk : a1, . . . ak ∈ R} = col(V )

The function F : Rn → Rn that projects points onto L is called
the projection map onto L. This is actually a linear function,
F (x) = PL x, where PL ∈ Rn×n is the projection matrix onto L

The matrix PL is symmetric:
P TL = PL, and idempotent: P 2

L =
PL. Furthermore, we have

I PL x = x for all x ∈ L, and

I PL x = 0 for all x ⊥ L
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Geometry of linear regression

The linear regression fit ŷ ∈ Rn is exactly the projection of y ∈ Rn
onto the linear subspace span{X1, . . . Xp} = col(X) ⊆ Rn

(Figure from ESL page 46.) Recall that ŷ = X(XTX)−1XT y, so
we want to show that X(XTX)−1XT = Pcol(X)
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First, we show that H = X(XTX)−1XT is symmetric and
idempotent:

I Symmetric:

I Idempotent:

Now suppose that y ∈ col(X); then y = Xa for some a ∈ Rp,

Finally suppose that y ⊥ col(X); then y ⊥ Xi for all i = 1, . . . p,
so

We proved that H = X(XTX)−1XT = Pcol(X), and therefore
ŷ = Pcol(X) y
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What do we gain from this geometry?

What does this geometric perspective do for us? There are some
facts about projection maps that translate to useful facts about
linear regression

E.g., for any subspace L ⊆ Rn, its orthogonal complement is

L⊥ = {x ∈ Rn : x ⊥ L} = {x ∈ Rn : x ⊥ v for any v ∈ L}

Fact: PL + PL⊥ = I, so that PL⊥ = I − PL

Hence for the linear regression of y on X, the residual vector is

y − ŷ = (I − Pcol(X))y = P{col(X)}⊥ y

So y − ŷ is orthogonal to any v ∈ col(X); in particular, this means
that y − ŷ is orthogonal to each of X1, . . . Xp

10



E.g., the projection map PL onto
any linear subspace L ⊆ Rn is
always non-expansive, that is, for
any points x, z ∈ Rn,

‖PL x− PL z‖2 ≤ ‖x− z‖2

Hence if y1, y2 ∈ Rn and ŷ1, ŷ2 ∈ Rn are their regression fits, then

‖ŷ1 − ŷ2‖2 = ‖Pcol(X) y1 − Pcol(X) y2‖2 ≤ ‖y1 − y2‖2

Furthermore, the geometric viewpoint is very helpful in proving
more substantial results about linear regression. We’ll cover two
such results next
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Unbiased estimates of linear functions

Note that we can write our linear regression model as

yi = xTi β
∗ + εi

where xi ∈ Rp is the ith measurement of predictor values (i.e., the
ith row of X ∈ Rn×p), β∗ ∈ Rp is the true coefficient vector, and
εi ∈ R is a random error satisfying E[εi] = 0, Var(εi) = σ2, and
Cov(εi, εj) = 0. We expect future observations at some x0 ∈ Rp
to be of the form

y0 = xT0 β
∗ + ε0

with ε0 coming from the same error distribution

Fact: if β̂ is the linear regression estimate, then for any a ∈ Rp,
the estimate aT β̂ is unbiased for aTβ∗, i.e., E[aT β̂] = aTβ∗

Why is this important? Because it says that our predictions xT0 β̂ at
any x0 ∈ Rp will be unbiased for the true mean xT0 β

∗ at x0
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Proof of this fact:

E[aT β̂] = E[aT (XTX)−1XT y]

=

=

=

Note that the estimate aT β̂ = aT (XTX)−1XT y = bT y is just a
linear function of y, with b = X(XTX)−1a

We’re going to consider the estimation of aTβ∗, for an arbitrary
a ∈ Rp, and restrict our attention to linear functions of y, cT y for
some c ∈ Rn, that are unbiased for aTβ∗:

E[cT y] = aTβ∗
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Best linear unbiased estimate (BLUE)

A natural question is: what is the best linear unbiased estimate
(BLUE) cT y for estimating aTβ∗? Recall that the linear regression
estimate aT β̂ = bT y falls into this category (linear and unbiased)

By “best” here, we mean the estimate cT y that minimizes the
mean squared error in estimating aTβ∗:

MSE(cT y) = E[(cT y − aTβ∗)2]

Gauss-Markov theorem: the linear regression estimate aT β̂ = bT y
is the BLUE, i.e., if cT y is any other unbiased estimate of aTβ∗,
then

MSE(aT β̂) ≤ MSE(cT y)

The proof uses the facts from geometry (Homework 4)

14



Note that for an unbiased estimator F = F (y),

MSE(F ) =

=

= Var(F )

So the Gauss-Markov theorem equivalently says that the regression
estimate aT β̂ has smallest variance compared to all linear unbiased
estimates

Does this mean we should always use linear regression?
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Univariate regression revisted

Write 〈a, b〉 = aT b =
∑n

i=1 aibi as the inner-product for vectors
a, b ∈ Rn

In this notation, we can write the univariate linear regression
coefficient of y ∈ Rn on a single predictor x ∈ Rn as

β̂ =
〈x, y〉
‖x‖22

Given p predictor variables X1, . . . Xp ∈ Rn, the univariate linear
regression coefficient of y on Xj is

β̂j =
〈Xj , y〉
‖Xj‖22

Fact: if X1, . . . Xp are orthogonal, then this is also the coefficient
of Xj in the multivariate linear regression of y on all of X1, . . . Xp
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Univariate regression with intercept

For univariate linear regression with an intercept term, i.e., for
regressing y ∈ Rn on predictors 1, x ∈ Rn, we can write the
coefficient of x as

β̂1 =
〈x− x̄1, y〉
‖x− x̄1‖22

We can alternatively view this as result of two steps:

1. Regress x on 1, yielding the coefficient

〈1, x〉
‖1‖22

=
〈1, x〉
n

= x̄

and the residual z = x− x̄1 ∈ Rn

2. Regress y on z, yielding the coefficient

β̂1 =
〈z, y〉
‖z‖22

=
〈x− x̄1, y〉
‖x− x̄1‖22
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Multivariate regression by orthogonalization

This idea extends to multivariate linear regression of y ∈ Rn on
predictors X1, . . . Xp ∈ Rn. Consider the p-step procedure:

1. Let Z1 = X1

2. For j = 2, . . . p:

Regress Xj onto Z1, . . . Zj−1 to get coefficients γ̂jk =
〈Zk,Xj〉
‖Zk‖22

for k = 1, . . . j − 1, and residual vector

Zj = Xj −
j−1∑
k=1

γ̂jkZk

3. Regress y on Zp to get the coefficient β̂p

Claim: the output β̂p of this algorithm is exactly the coefficient of
Xp in the multivariate linear regression of y on X1, . . . Xp
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Why is this true? To see this, we argue in several steps

Step 1: The vectors Z1, . . . Zp ∈ Rn produced by this algorithm
are orthogonal. To see this, note that at any stage, we define Zj
to be the residual from regressing Xj onto Z1, . . . Zj−1. Therefore
(by an earlier fact), Zj is orthogonal to Z1, . . . Zj−1

Step 2: For any j = 1, . . . p, the definition Zj = Xj −
∑j−1

k=1 γ̂jkZk
shows that each Zj is a linear combination of X1, . . . Xj , so

span{Z1, . . . Zj} ⊆ span{X1, . . . Xj}

But rearranging the above definition shows that each Xj is also a
linear combination of Z1, . . . Zj , so

span{X1, . . . Xj} ⊆ span{Z1, . . . Zj}

Hence the spans are equal, span{X1, . . . Xj} = span{Z1, . . . Zj}
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Step 3: Using that span{X1, . . . Xp} = span{Z1, . . . Zp} (and
using what we know about linear regression and projections), the
linear regression fit y on X1, . . . Xp is the same as the linear
regression fit of y on Z1, . . . Zp. Call this fit ŷ. Hence we can write

ŷ = c1Z1 + . . .+ cpZp

for some c1, . . . cp

Furthermore, as Z1, . . . Zp are orthogonal, the coefficients c1, . . . cp
are just given by univariate linear regression, so in particular we
have

cp =
〈Zp, y〉
‖Zp‖22

= β̂p
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Step 4: For each Zj in the expression

ŷ = c1Z1 + . . .+ cp−1Zp−1 + β̂pZp

plug in the linear representation in terms of X1, . . . Xp. Note that
the variable Xp appears only through Zp, and the coefficient of Xp

is 1:

Zp = Xp −
p−1∑
k=1

γ̂pkZk

Therefore we can write, for some constants a1, . . . ap−1,

ŷ = a1X1 + . . .+ ap−1Xp−1 + β̂pXp

Hence β̂p is the coefficient of Xp in the multiple regression of y on
X1, . . . Xp
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Closed-form expression for multiple regression coefficients

We just proved that, in the regression of y ∈ Rn onto predictors
X1, . . . Xp ∈ Rn, the coefficient of Xp is

β̂p =
〈Zp, y〉
‖Zp‖22

where Zp is the residual from regressing Xp onto Z1, . . . Zp−1, i.e.,
the residual from regressing Xp onto X1, . . . Xp−1

Note that our algorithm didn’t depend in any way on the order of
the variables, so for any j = 1, . . . p, we could have modified this
order by putting Xj at the end, and we get the multiple regression
coefficient of Xj :

β̂j =
〈Zj , y〉
‖Zj‖22

where Zj is the residual from regressing Xj onto all Xi, i 6= j
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Recap: perspectives on linear regression

In this lecture we saw some new perspectives on linear regression

We saw that the linear regression fit of y ∈ Rn onto X ∈ Rn×p,
whose columns are X1, . . . Xp ∈ Rn is the projection of y onto the
linear subspace col(X) = span{X1, . . . Xp}. This immediately
gives us some usual facts about regression

Given any vector a ∈ Rp, if we assume that y comes from a model
with true coefficients β∗ (and uncorrelated errors with mean zero
and constant variance), then the regression estimate aT β̂ is the
best linear unbiased estimate (BLUE) of aTβ∗

Each coefficient β̂j in multiple linear regression can be expressed
explicitly in terms y and the residual from projecting Xj onto all
variables Xi, i 6= j
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Next time: more regression

A few more perspectives on regression ... moving into modern
regression

(From ESL page 54)
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