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Reminder: explicit formula for regression coefficients

Last time we proved that for the multiple regression of y ∈ Rn on
predictors X1, . . . Xp ∈ Rn, the jth coefficient can be written as

β̂j =
〈zj , y〉
‖zj‖22

This is the coefficient of the univariate regression of y on zj

Here zj ∈ Rn is the residual from the regression of Xj on all other
predictors Xj , i 6= j. This is called orthogonalizing Xj with respect
to the other predictors, because 〈zj , Xi〉 = 0 for all i 6= j (Why?)

You can think of this as removing
the components of Xi, i 6= j from
the jth predictor Xj
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Orthogonal predictor variables

If X1, . . . Xp are orthogonal, then we claimed last time that the
jth multiple regression coefficient of y on X1, . . . Xp is equal to
the univariate regression coefficient of y on Xj . We can easily
verify this fact with our new formula

Note that zj is the residual from regressing Xj onto Xi, i 6= j.
Remember that the regression fit of Xj onto Xi, i 6= j is really
just the projection of Xj onto the linear subspace span{Xi : i 6= j}

If Xj is orthogonal to the rest,
then this fit is exactly 0, so the
residual zj is simply zj = Xj−0 =
Xj

Therefore β̂j =
〈zj , y〉
‖zj‖22

=
〈Xj , y〉
‖Xj‖22

is just the univariate regression

coefficient of y on Xj
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Correlated predictor variables

If X1, . . . Xp are correlated, then this new formula gives some
insight into what happens to the multiple regression coefficients

Note that zj is the residual from regressing Xj onto Xi, i 6= j.
Remember that the regression fit of Xj onto Xi, i 6= j is really
just the projection of Xj onto the linear subspace span{Xi : i 6= j}

If Xj is highly correlated with the
rest, then this fit is close to Xj ,
so the residual zj is close to 0

This makes the regression coefficient β̂j =
〈zj , y〉
‖zj‖22

unstable, as the

denominator is very small, but the numerator can be too

4



Variance inflation

From this formula we can explicitly compute the variance of the
jth multple regression coefficient:

Var(β̂j) =
Var(〈zj , y〉)
‖zj‖42

=
‖zj‖22σ2

‖zj‖42
=

σ2

‖zj‖22

We can see that having correlated predictors inflates the variance
of multiple regression coefficients. Remember that the Z-statistic
for the jth regression coefficient is

Zj =
β̂j√

Var(β̂j)
=
β̂j
σ
· ‖zj‖2

so if Xj is highly correlated with the other predictors, its regression
coefficient will likely be not significant (according to Zj)
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Dropping predictor variables

Now suppose that Xj and Xk both contribute in explaining y, but
are highly correlated with each other. Then from what we said on
the last slide, neither |Zj | nor |Zk| will be very large, so they won’t
be significant

Now what happens if we remove one of them—say, Xk—from the
model, and recompute the regression coefficients? The term ‖zj‖22
will be much larger (assuming that Xj is not highly correlated with
other predictors than Xk). Hence it’s variance will decrease, and
Zj will likely increase

This is why we can’t remove two (or more) supposedly insignificant
predictors at a time—in short: because significance depends on
what other predictors are in the model!
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Shortcomings of regression

Two main themes:

1. Predictive ability: the linear regression fit often does not
predict well, especially when p (the number of predictors) is
large

(Important to note that is not even necessarily due to
nonlinearity in the data! Can still predict poorly even when a
linear model could fit well)

2. Interpretative ability: linear regression “freely” assigns a
coefficient to each predictor variable. When p is large, we may
sometimes seek, for the sake of interpretation, a smaller set of
important variables

Hence we want to “encourage” our fitting procedure to make
only a subset of the coefficients large, and others small or
even better, zero
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Prediction accuracy and mean-squared error

Suppose we observe data of the form

yi = f(xi) + εi, i = 1, . . . n

Here f : Rp → R is some true function, xi = (xi1, . . . xip) ∈ Rp

are fixed predictor measurements, and εi ∈ Rn are random errors
with E[εi] = 0, Var(εi) = σ2, and Cov(εi, εj) = 0

Consider one more data point y0, independent of y1, . . . yn,

y0 = f(x0) + ε0

and suppose that we want to predict y0 at the fixed point x0 ∈ Rp,
from the observed pairs (y1, x1), . . . (yn, xn)

Think of, e.g., the typical linear regression model: here we have
f(xi) = xTi β

∗, for some true regression coefficients β∗
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Suppose that we use f̂ to predict f (again, think of regression:
f̂(xi) = xTi β̂). In particular, we predict y0 via f̂(x0)

Question: how does prediction error (PE) relate to to mean
squared error (MSE)?

PE
(
f̂(x0)

)
= E

[(
y0 − f̂(x0)

)2]
=

=

=

= σ2 +MSE
(
f̂(x0)

)
So PE and MSE are essentially the same thing ... in the sense that
doing well in terms of one is the same as in terms of the other
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Bias and variance

Now let’s focus on MSE. Again we used f̂ to predict f

Question: what kind of quantities does MSE depend on?

MSE
(
f̂(x0

)
= E

[(
f(x0)− f̂(x0)

)2]
=

=

=
[
Bias

(
f̂(x0)

)]2
+Var

(
f̂(x0)

)
This is called the bias-variance tradeoff (or decomposition)

Think: what kinds of estimators will have high bias? What kinds
will have high variance?
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Back to the linear model

Here we assume that we have observations of the form

yi = xTi β
∗ + εi, i = 1, . . . n

i.e., f(xi) = xTi β
∗. Now what about the least squares prediction

f̂LS(xi) = xTi β̂, where β̂ are the estimated regression coefficients?

Recall the Gauss-Markov theorem said that this estimator is the
BLUE: best linear unbiased estimator. I.e., for a fixed input point
x0, if f̂(x0) is any other linear, unbiased estimator of xT0 β

∗, then

MSE
(
f̂(x0)

)
≥ MSE

(
f̂LS(x0)

)
= MSE(xT0 β̂)

I Unbiased: this means that E[f̂(x0)] = xT0 β
∗

I Linear: this means linear in y = (y1, . . . yn), i.e., f̂(x0) = cT y
for some c
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Therefore, for any unbiased f̂(x0)

MSE
(
f̂(x0)

)
=
[
Bias

(
f̂(x0)

)]2
+Var

(
f̂(x0)

)
= 0 + Var

(
f̂(x0)

)
The Gauss-Markov theorem says that among unbiased and linear
estimates, f̂LS has the smallest MSE, i.e., the smallest variance

But wait ... I claim
to know another linear
estimator of xT0 β

∗ that
has a smaller MSE then
the least squares esti-
mate! How can this be?
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Averaging over all inputs

It is helpful to look at the average PE or MSE across all the input
points x1, . . . xn

PE(f̂) =
1

n

n∑
i=1

PE
(
f̂(xi)

)
, MSE(f̂) =

1

n

n∑
i=1

MSE
(
f̂(xi)

)

Note the same relationships hold:

PE(f̂) = σ2 +MSE(f̂)

= σ2 +
1

n

n∑
i=1

[
Bias

(
f̂(xi)

)]2
+

1

n

n∑
i=1

Var
(
f̂(xi)

)
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What does this look like for regression, f̂LS(xi) = xTi β̂?

PE(f̂LS) = σ2 +
1

n

n∑
i=1

[
Bias(xTi β̂)

]2
+

1

n

n∑
i=1

Var(xTi β̂)

= σ2 + 0 +
pσ2

n

Why this last expression for the variance?

1

n

n∑
i=1

Var(xTi β̂) =
1

n
trace

(
Var(Xβ̂)

)
=

=

This scales linearly with the number of predictors p
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Example: small regression coefficients

Example: simulation with n = 50 and p = 30. The entries of the
predictor matrix X ∈ R50×30 are all i.i.d. N(0, 1), so overall the
variables have low correlation

Histogram of the true regression coefficients β∗ ∈ R30:
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Here 10 coefficients are
large (between 0.5 and
1) and 20 coefficients
are small (between 0
and 0.3)
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The response y ∈ R50 is drawn from the model y = Xβ∗ + ε,
where the entries of ε ∈ R50 are all i.i.d N(0, 1) (hence the noise
variance is σ2 = 1)

We repeated the following 100 times:

I Generate a response vector y

I Compute the linear regression fit Xβ̂

I Generate a new response y′

I Record the error 1/n
∑n

i=1(y
′
i − xTi β̂)2

We averaged this observed error over the 100 repetitions to get an
estimate of the the prediction error

We also estimated the squared bias and variance of the fits Xβ̂
over the 100 repetitions. Recall that it should be true that
prediction error = 1 + squared bias + variance

16



Results:

> bias

[1] 0.00647163

> var

[1] 0.6273129

> p/n

[1] 0.6

> 1 + bias + var

[1] 1.633785

> prederr

[1] 1.644363

This is a good check for our formulas!
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How can we do better?

For linear regression, its prediction error is just σ2 + p/n · σ2, the
second term being the variance 1/n

∑n
i=1Var(x

T
i β̂)

What can we see from this? Each additional predictor variable will
add the same amount of variance σ2/n, regardless of whether its
true coefficient is large or small (or zero)

In the previous example, we were “spending” variance in trying to
fit truly small coefficients—there were 20 of them, out of 30 total

So can we do better by shrinking small coefficients towards zero,
incurring some bias, so as to reduce the variance? You can think of
this as trying to ignore some “small details” in order to get a more
stable “big picture”

The answer, as we’ll see next time, is yes
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Recap: more perspectives, shortcomings

In this lecture, we investigated in a little more detail the explicit
formula for multiple regression coefficients. We convinced
ourselves that for orthogonal predictors, the multiple regression
coefficients are just the univariate ones. For correlated predictors,
these can be very different.

The variance of the jth regression coefficient also has an explicit
formula in terms of the residual regressing the jth predictor onto
all of the others. This shows that the variance is inflated by the
presence of correlated variables; hence the significance is degraded

We discussed two shortcomings of linear regression: its predictive
ability and its interpretative ability. We looked at the former in
more detail in terms of the bias-variance decomposition. We
argued that it may help the overall prediction accuracy to decrease
the variance at the expense of slightly increasing the bias
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Next time: moving into modern regression

Ridge regression can outperform linear regression in terms of
prediction error
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