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Reminder: ridge regression and variable selection

Recall our setup: given a response vector y ∈ Rn, and a matrix
X ∈ Rn×p of predictor variables (predictors on the columns)

Last time we saw that ridge regression,

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖22

can have better prediction error than linear regression in a variety
of scenarios, depending on the choice of λ. It worked best when
there was a subset of the true coefficients that are small or zero

But it will never sets coefficients to zero exactly, and therefore
cannot perform variable selection in the linear model. While this
didn’t seem to hurt its prediction ability, it is not desirable for the
purposes of interpretation (especially if the number of variables p is
large)
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Recall our example: n = 50, p = 30; true coefficients: 10 are
nonzero and pretty big, 20 are zero
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Example: prostate data

Recall the prostate data example: we are interested in the level of
prostate-specific antigen (PSA), elevated in men who have prostate
cancer. We have measurements of PSA on n = 97 men with
prostate cancer, and p = 8 clinical predictors. Ridge coefficients:
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What if the people who gave this data want us to derive a linear
model using only a few of the 8 predictor variables to predict the
level of PSA?
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Now the lasso coefficient paths:
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We might report the first 3 coefficients to enter the model: lcavol
(the log cancer volume), svi (seminal vesicle invasion), and lweight
(the log prostate weight)

How would we choose 3 (i.e., how would we choose λ?) We’ll talk
about this later
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The lasso

The lasso1 estimate is defined as

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ

p∑
j=1

|βj |

= argmin
β∈Rp

‖y −Xβ|22︸ ︷︷ ︸
Loss

+λ ‖β‖1︸︷︷︸
Penalty

The only difference between the lasso problem and ridge regression
is that the latter uses a (squared) `2 penalty ‖β‖22, while the
former uses an `1 penalty ‖β‖1. But even though these problems
look similar, their solutions behave very differently

Note the name “lasso” is actually an acronym for: Least Absolute
Selection and Shrinkage Operator

1Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso”
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β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

The tuning parameter λ controls the strength of the penalty, and
(like ridge regression) we get β̂lasso = the linear regression estimate
when λ = 0, and β̂lasso = 0 when λ =∞

For λ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coefficients.
But the nature of the `1 penalty causes some coefficients to be
shrunken to zero exactly

This is what makes the lasso substantially different from ridge
regression: it is able to perform variable selection in the linear
model. As λ increases, more coefficients are set to zero (less
variables are selected), and among the nonzero coefficients, more
shrinkage is employed
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Example: visual representation of lasso coefficients

Our running example from last time: n = 50, p = 30, σ2 = 1, 10
large true coefficients, 20 small. Here is a visual representation of
lasso vs. ridge coefficients (with the same degrees of freedom):
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Important details

When including an intercept term in the model, we usually leave
this coefficient unpenalized, just as we do with ridge regression.
Hence the lasso problem with intercept is

β̂0, β̂
lasso = argmin

β0∈R, β∈Rp
‖y − β01−Xβ‖22 + λ‖β‖1

As we’ve seen before, if we center the columns of X, then the
intercept estimate turns out to be β̂0 = ȳ. Therefore we typically
center y,X and don’t include an intercept them

As with ridge regression, the penalty term ‖β‖1 =
∑p

j=1 |βj | is not
fair is the predictor variables are not on the same scale. Hence, if
we know that the variables are not on the same scale to begin
with, we scale the columns of X (to have sample variance 1), and
then we solve the lasso problem
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Bias and variance of the lasso

Although we can’t write down explicit formulas for the bias and
variance of the lasso estimate (e.g., when the true model is linear),
we know the general trend. Recall that

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

Generally speaking:

I The bias increases as λ (amount of shrinkage) increases

I The variance decreases as λ (amount of shrinkage) increases

What is the bias at λ = 0? The variance at λ =∞?

In terms of prediction error (or mean squared error), the lasso
performs comparably to ridge regression

10



Example: subset of small coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 small
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The lasso: see the function lars in the package lars
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Example: all moderate coefficients

Example: n = 50, p = 30; true coefficients: 30 moderately large
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Note that here, as opposed to ridge regression the variance doesn’t
decrease fast enough to make the lasso favorable for small λ
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Example: subset of zero coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 zero

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

λ

Linear MSE
Lasso MSE
Lasso Bias^2
Lasso Var

13



Advantage in interpretation

On top the fact that the lasso is competitive with ridge regression
in terms of this prediction error, it has a big advantage with respect
to interpretation. This is exactly because it sets coefficients exactly
to zero, i.e., it performs variable selection in the linear model

Recall the prostate cancer data example:
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Example: murder data

Example: we study the murder rate (per 100K people) of n = 2215
communities in the U.S.2 We have p = 101 attributes measured
each community, such as

[1] "racePctHisp "agePct12t21" "agePct12t29"

[4] "agePct16t24" "agePct65up" "numbUrban"

[7] "pctUrban" "medIncome" "pctWWage"

...

Our goal is to predict the murder rate as a linear function of these
attributes. For the purposes of interpretation, it would be helpful
to have a linear model involving only a small subset of these
attributes. (Note: interpretation here is not causal)

2Data from UCI Machine Learning Repository, http://archive.ics.uci.
edu/ml/datasets/Communities+and+Crime+Unnormalized
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With ridge regression, regardless of the choice of λ <∞, we never
get zero coefficient estimates. For λ = 25, 000, which corresponds
to approximately 5 degrees of freedom, we get estimates:

racePctHisp agePct12t21 agePct12t29

0.0841354923 0.0076226029 0.2992145264

agePct16t24 agePct65up numbUrban

-0.2803165408 0.0115873137 0.0154487020

pctUrban medIncome pctWWage

-0.0155148961 -0.0105604035 -0.0228670567

...

With the lasso, for about the same degrees of freedom, we get:

agePct12t29 agePct16t24 NumKidsBornNeverMar

0.7113530 -1.8185387 -0.6835089

PctImmigRec10 OwnOccLowQuart

1.3825129 1.0234245

and all other coefficient estimates are zero. That is, we get exactly
5 nonzero coeffcients out of p = 101 total
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Example: credit data

Example from ISL sections 6.6.1 and 6.6.2: response is average
credit debt, predictors are income, limit (credit limit), rating
(credit rating), student (indicator), and others

Ridge Lasso
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Constrained form

It can be helpful to think of our two problems constrained form:

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 subject to ‖β‖22 ≤ t

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 subject to ‖β‖1 ≤ t

Now t is the tuning parameter (before it was λ). For any λ and
corresponding solution in the previous formulation (sometimes
called penalized form), there is a value of t such that the above
constrained form has this same solution

In comparison, the usual linear regression estimate solves the
unconstrained least squares problem; these estimates constrain the
coefficient vector to lie in some geometric shape centered around
the origin. This generally reduces the variance because it keeps the
estimate close to zero. But which shape we choose really matters!
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Why does the lasso give zero coefficients?

(From page 71 of ESL)
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What is degrees of freedom?

Broadly speaking, the degrees of freedom of an estimate describes
its effective number of parameters

More precisely, given data y ∈ Rn from the model

yi = µi + εi, i = 1, . . . n

where E[εi] = 0, Var(εi) = σ2, Cov(εi, εj) = 0, suppose that we
estimate y by ŷ. The degrees of freedom of the estimate ŷ is

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi, yi)

The higher the correlation between the ith fitted value and the ith
data point, the more adaptive the estimate, and so the higher its
degrees of freedom
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Let X ∈ Rn×p be a fixed matrix of predictors3

I For linear regression, ŷ = Xβ̂linear, we have df(ŷ) = p

I For ridge regression, ŷ = Xβ̂ridge, where

β̂ridge = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖22

we have df(ŷ) = trace
(
X(XTX + λI)−1XT

)
I For the lasso, ŷ = Xβ̂lasso, where

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

we have df(ŷ) = E[number of nonzero coefficients in β̂lasso]

3For simplicity, we assume that the predictors are linearly independent; the
case for dependent predictors is similar
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One usage of degrees of freedom is to put two different estimates
on equal footing

E.g., comparing ridge and lasso for the prostate cancer data set

Ridge Lasso
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Recap: the lasso

In this lecture we learned a variable selection method in the linear
model setting: the lasso. The lasso uses a penalty like ridge
regression, except the penalty is the `1 norm of the coefficient
vector, which causes the estimates of some coefficients to be
exactly zero. This is in constrast to ridge regression which never
sets coefficients to zero

The tuning parameter λ controls the strength of the `1 penalty.
The lasso estimates are generally biased, but have good mean
squared error (comparable to ridge regression). On top of this, the
fact that it sets coefficients to zero can be a big advantage for the
sake of interpretation

We defined the concept of degrees of freedom, which measures the
effective number of parameters used by a estimator. This allows us
to compare estimators with different tuning parameters
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Next time: model selection and validation

Cross-validation can be used to estimate the prediction error curve

(From ESL page 244)

24


