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Reminder: modern regression techniques

Over the last two lectures we’ve investigated modern regression
techniques. We saw that linear regression has generally low bias
(zero bias, when the true model is linear) but high variance,
leading to poor predictions. These modern methods introduce
some bias but significantly reduce the variance, leading to better
predictive accuracy

Given a response y ∈ Rn and predictors X ∈ Rn×p, we can think
of these modern methods as constrained least squares:

β̂ = argmin
β∈Rp

‖y −Xβ‖22 subject to ‖β‖q ≤ t,

I q = 1 gives the lasso (and ‖β‖1 =
∑p

j=1 |βj |)

I q = 2 gives ridge regression (and ‖β‖2 =
√∑p

j=1 β
2
j )
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Regularization at large

Most other modern methods for regression can be expressed as

β̂ = argmin
β∈Rp

‖y −Xβ‖22 subject to R(β) ≤ t,

or equivalently,

β̂ = argmin
β∈Rp

‖y −Xβ‖22 + λ ·R(β).

The term R is called a penalty or regularizer, and modifying the
regression problem in this way is called applying regularization

I Regularization can be applied beyond regression: e.g., it can
be applied to classification, clustering, principal component
analysis

I Regularization goes beyond sparsity: e.g., design R to induce
smoothness or structure, instead of pure sparsity
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Example: smoothing splines

Smoothning splines use a form of regularization:

f̂ = argmin
f

n∑
i=1

(
yi − f(xi)

)2
+ λ ·

∫ (
f ′′(x)

)2
dx︸ ︷︷ ︸

R(f)

Example with n = 100 points:
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Choosing a value of the tuning parameter

Each regularization method has an associated tuning parameter:
e.g., this was λ in the smoothing spline problem, and λ for lasso
and ridge regression in the penalized forms (or t in the constrained
forms)

The tuning parameter controls the amount of regularization, so
choosing a good value of the tuning parameter is crucial. Because
each tuning parameter value corresponds to a fitted model, we also
refer to this task as model selection

What we might consider a good choice of tuning parameter,
however, depends on whether our goal is prediction accuracy or
recovering the right model for interpretation purposes. We’ll cover
choosing the tuning parameter for the purposes of prediction;
choosing the tuning parameter for the latter purpose is a harder
problem
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Prediction error and test error

Our usual setup: we observe

yi = f(xi) + εi, i = 1, . . . n

where xi ∈ Rp are fixed (nonrandom) predictor measurements, f is
the true function we are trying to predict (think f(xi) = xTi β

∗ for
a linear model), and εi are random errors

We call (xi, yi), i = 1, . . . n the training data. Given an estimator
f̂ built on the training data, consider the average prediction error
over all inputs

PE(f̂) = E

[
1

n

n∑
i=1

(
y′i − f̂(xi)

)2]
where y′i = f(xi) + ε′i, i = 1, . . . n are another set of observations,
independent of y1, . . . yn
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Suppose that f̂ = f̂θ depends on a tuning parameter θ, and we
want to choose θ to minimize PE(f̂θ)

If we actually had training data y1, . . . yn and test data y′1, . . . y
′
n

(meaning that we don’t use this to build f̂θ) in practice, then we
could simply use

TestErr(f̂θ) =
1

n

n∑
i=1

(
y′i − f̂θ(xi)

)2
called the test error, as an estimate for PE(f̂θ). The larger that n
is, the better this estimate

We usually don’t have test data. So what to do instead?
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What’s wrong with training error?

It may seem like

TestErr(f̂θ) =
1

n

n∑
i=1

(
y′i − f̂θ(xi)

)2
and

TrainErr(f̂θ) =
1

n

n∑
i=1

(
yi − f̂θ(xi)

)2
shouldn’t be too different—after all, yi and y′i are independent
copies of each other. The second quantity is called the training
error: this is the error of f̂ as measured by the data we used to
build it

But actually, the training and test error curves are fundamentally
different. Why?
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Example: smoothing splines (continued)

Back to our smoothing spline example: for a small value of the
tuning parameter λ, the training and test errors are very different
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Training and test error curves, averaged over 100 simulations:
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Cross-validation

Cross-validation is a simple, intuitive way to estimate prediction
error

Given training data (xi, yi), i = 1, . . . n and an estimator f̂θ,
depending on a tuning parameter θ

Even if θ is a continuous parame-
ter, it’s usually not practically fea-
sible to consider all possible values
of θ, so we discretize the range
and consider choosing θ over some
discrete set {θ1, . . . θm}
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For a number K, we split the training pairs into K parts or “folds”
(commonly K = 5 or K = 10)

K-fold cross validation considers training on all but the kth part,
and then validating on the kth part, iterating over k = 1, . . .K

(When K = n, we call this leave-one-out cross-validation, because
we leave out one data point at a time)
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K-fold cross validation procedure:

I Divide the set {1, . . . n} into K subsets (i.e., folds) of roughly
equal size, F1, . . . FK

I For k = 1, . . .K:

I Consider training on (xi, yi), i /∈ Fk, and validating on
(xi, yi), i ∈ Fk

I For each value of the tuning parameter θ ∈ {θ1, . . . θm},
compute the estimate f̂−kθ on the training set, and record
the total error on the validation set:

ek(θ) =
∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
I For each tuning parameter value θ, compute the average error

over all folds,

CV(θ) =
1

n

K∑
k=1

ek(θ) =
1

n

K∑
k=1

∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
13



Having done this, we get a cross-validation error curve CV(θ) (this
curve is a function of θ), e.g.,
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and we choose the value of tuning parameter that minimizes this
curve,

θ̂ = argmin
θ∈{θ1,...θm}

CV(θ)
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Example: choosing λ for the lasso

Recall our running example from last time: n = 50, p = 30, and
the true model is linear with 10 nonzero coefficients. We consider

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

and use 5-fold cross-validation to choose λ. Sample code for
making the folds:

K = 5

i.mix = sample(1:n)

folds = vector(mode="list",length=K)

# divide i.mix into 5 chunks of size n/K=10, and

# store each chunk in an element of the folds list

> folds

[[1]]

[1] 30 29 4 2 50 42 27 25 23 41

[[2]]

[1] 21 44 45 9 10 26 16 6 24 48

...
15



We consider the values: lam = seq(0,12,length=60). The
resulting cross-validation error curve:
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How does this compare to the prediction error curve? Because this
is a simulation, we can answer this question
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Standard errors for cross-validation

One nice thing about K-fold cross-validation (for a small K � n,
e.g., K = 5) is that we can estimate the standard deviation of
CV(θ), at each θ ∈ {θ1, . . . θm}

First, we just average the validation errors in each fold:

CVk(θ) =
1

nk
ek(θ) =

1

nk

∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
where nk is the number of points in the kth fold

We then compute the sample standard deviation of CV1(θ), . . .
CVK(θ),

SD(θ) =
√

var
(
CV1(θ), . . .CVK(θ)

)
Finally we estimate the standard deviation of CV(θ)—called the
standard error of CV(θ)—by SE(θ) = SD(θ)/

√
K
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Example: choosing λ for the lasso (continued)

The cross-validation error curve from our lasso example, with ±
standard errors:
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The one standard error rule

The one standard error rule is an alternative rule for choosing the
value of the tuning parameter, as opposed to the usual rule

θ̂ = argmin
θ∈{θ1,...θm}

CV(θ)

We first find the usual minimizer θ̂ as above, and then move θ in
the direction of increasing regularization (this may be increasing or
decreasing θ, depending on the parametrization) as much as we
can, such that the cross-validation error curve is still within one
standard error of CV(θ̂). In other words, we maintain

CV(θ) ≤ CV(θ̂) + SE(θ̂)

Idea: “All else equal (up to one standard error), go for the simpler
(more regularized) model”
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Example: choosing λ for the lasso (continued)

Back to our lasso example: the one standard error rule chooses a
larger value of λ (more regularization):
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What happens if we really shouldn’t be shrinking in the first place?
We’d like cross-validation, our automated tuning parameter
selection procedure, to choose a small value of λ

Recall our other example from last time: n = 50, p = 30, and the
true model is linear with all moderately large coefficients
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The standard errors here reflect uncertainty about the shape of the
CV curve for large λ
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Prediction versus interpretation

Remember: cross-validation error estimates prediction error at any
fixed value of the tuning parameter, and so by using it, we are
implicitly assuming that achieving minimal prediction error is our
goal

Choosing λ for the goal of recovering the true model, for the sake
of interpretation, is somewhat of a different task. The value of the
parameter that achieves the smallest cross-validation error often
corresponds to not enough regularization for these purposes. But
the one standard error rule is a step in the right direction

There are other (often more complicated) schemes for selecting a
value of the tuning parameter for the purposes of true model
recovery
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Recap: cross-validation

Training error, the error of an estimator as measured by the data
used to fit it, is not a good surrogate for prediction error. It just
keeps decreasing with increasing model complexity

Cross-validation, on the other hand, much more accurately reflects
prediction error. If we want to choose a value for the tuning
parameter of a generic estimator (and minimizing prediction error
is our goal), then cross-validation is the standard tool

We usually pick the tuning parameter that minimizes the
cross-validation error curve, but we can also employ the one
standard error rule, which helps us pick a more regularized model
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Next time: model assessment, more cross-validation

How would we do cross-validation for a structured problem like
that solved by smoothing splines?
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