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Reminder: cross-validation

Given training data (xi, yi), i = 1, . . . n, we construct an estimator
f̂ of some unknown function f . Suppose that f̂ = f̂θ depends on a
tuning parameter θ

How to choose a value of θ to optimize predictive accuracy of f̂θ?
Cross-validation offers one way. Basic idea is simple: divide up
training data into K folds (here K is fixed, e.g., K = 5 or K = 10)

(Typically this is done at random)
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Then, we hold out each fold one at a time, train on the remaining
data, and predict the held out observations, for each value of the
tuning parameter

I.e., for each value of the tuning parameter θ, the cross-validation
error is

CV(θ) =
1

n

K∑
k=1

∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
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We choose the value of tuning pa-
rameter that minimizes the CV er-
ror curve,

θ̂ = argmin
θ∈{θ1,...θm}

CV(θ)
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Example: choosing λ for the lasso

Example from last time: n = 50, p = 30, and the true model is
linear with 10 nonzero coefficients. We consider the lasso estimate

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

Performing 5-fold cross-
validation, over 60 values
of the tuning parameter be-
tween 0 and 12, we choose
λ̂ = 3.458

0 2 4 6 8 10 12

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

λ

C
V

 e
rr

or

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

λ̂ = 3.458
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What to do next?

What do we do next, after having used cross-validation to choose a
value of the tuning parameter θ̂?

It may be an obvious point, but worth being clear: we now fit our
estimator to the entire training set (xi, yi), i = 1, . . . n, using the
tuning parameter value θ̂

E.g., in the last lasso example, we resolve the lasso problem

β̂lasso = argmin
β∈Rp

‖y −Xβ‖22 + λ‖β‖1

on all of the training data, with λ̂ = 3.458

We can then use this estimator β̂lasso to make future predictions
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Reminder: standard errors

Recall that we can compute standard errors for the CV error curve
at each tuning parameter value θ. First define, for k = 1, . . .K:

CVk(θ) =
1

nk

∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
where nk is the number of points in the kth fold

Then we compute the sample standard deviation of CV1(θ), . . .
CVK(θ),

SD(θ) =
√
var
(
CV1(θ), . . .CVK(θ)

)
Finally we use

SE(θ) = SD(θ)/
√
K

for the standard error of CV(θ)
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Reminder: one standard error rule

Recall that the one standard error rule is an alternative way of
choosing θ from the CV curve. We start with the usual estimate

θ̂ = argmin
θ∈{θ1,...θm}

CV(θ)

and we move θ in the direction of increasing regularization until it
ceases to be true that

CV(θ) ≤ CV(θ̂) + SE(θ̂)

In words, we take the simplest (most regularized) model whose
error is within one standard error of the minimal error
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Example: choosing λ for the lasso

In the lasso criterion, larger λ means more regularization

For our last example, applying the one standard error rule has us
increase the tuning parameter choice from λ̂ = 3.458 all the way
up until λ̂ = 6.305
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Usual rule:
λ̂ = 3.458

One standard error rule:
λ̂ = 6.305 When fitting on the whole

training data, this is a dif-
ference between a model
with 19 and 16 nonzero co-
efficients

(Remember the true model
had 10)
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Prediction versus interpretation

Remember: cross-validation error estimates prediction error at any
fixed value of the tuning parameter, and so by using it, we are
implicitly assuming that achieving minimal prediction error is our
goal

Choosing λ for the goal of recovering the true model, for the sake
of interpretation, is somewhat of a different task. The value of the
parameter that achieves the smallest cross-validation error often
corresponds to not enough regularization for these purposes. But
the one standard error rule is a step in the right direction

There are other (often more complicated) schemes for selecting a
value of the tuning parameter for the purposes of true model
recovery
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Model assessment

Instead of just using the CV error curves to pick a value of the
tuning parameter, suppose that we wanted to use cross-validation
to actually estimate the prediction error values themselves

I.e., suppose that we ac-
tually cared about the val-
ues of the CV error curve,
rather than just the loca-
tion of its minimum
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This is called model assessment (as opposed to model selection)
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Why would we want to do this? Multiple reasons:
I Report estimate for prediction error to collaborator
I Compare estimated prediction error to known prediction errors

of other estimators
I Answering the question: is my estimator f̂ working at all?
I Choosing between different estimators (each possibly having

their own tuning parameters)

E.g., from Homework 4:

Ridge Lasso
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Generally speaking, cross-validation error produces good estimates
of prediction error

An example from ESL page 244:

Prediction error is in orange, cross-validation error is in blue (and
one standard errors bars are drawn)
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Choice of K

Essentially, the larger the choice of K, the more iterations needed,
and so the more computation. So taking K = n (i.e., leave-one-out
cross-validation) is going to be a lot more costly than K = 5

Aside from computation, the choice of K affects the quality of our
cross-validation error estimates for model assessment. Consider:

I K = 2: split-sample cross-validation. Our CV error estimates
are going to be biased upwards, because we are only training
on half the data each time

I K = n: leave-one-out cross-validation. Our CV estimates

CV(θ) =
1

n

n∑
i=1

(
yi − f̂−iθ (xi)

)2
are going to have high variance because we’re averaging a
bunch of (positively) correlated quantities
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The bias-variance tradeoff, again!

Choosing K = 5 or K = 10 seems to generally be a good tradeoff

I In each iteration we train on a fraction of (about) (K − 1)/K
the total training set, so this reduces the bias

I There is less overlap between the training sets across
iterations, so the terms in

CV(θ) =
1

n

K∑
k=1

∑
i∈Fk

(
yi − f̂−kθ (xi)

)2
are not as correlated, and the error estimate has a smaller
variance

The choices K = 5 or K = 10 are pretty much the standards, and
people believe that these give good estimates of prediction error,
but there is not really any theory supporting this
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Leave-one-out shortcut

Recall that leave-one-out cross-validation is given by

CV(θ) =
1

n

n∑
i=1

(
yi − f̂−iθ (xi)

)2
where f̂−iθ is the estimator fit to all but the ith training pair (xi, yi)

Suppose that our tuning parameter is θ = λ and f̂λ is the ridge
regression estimator

f̂λ(xi) = xTi β̂
ridge = xTi (X

TX + λI)−1XT y

Then it turns out that

1

n

n∑
i=1

(
yi − f̂−iλ (xi)

)2
=

1

n

n∑
i=1

[
yi − f̂λ(xi)
1− Sii

]2
where S = X(XTX + λI)−1XT . This realization provides a huge
computational savings!
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Consider a linear fitting method f̂ , i.e., this is an estimator such
that ŷ = (f̂(x1), . . . f̂(xn)) is given by

ŷ = Sy

for some matrix S. It turns out (Homework 5) that for many such
estimators, we have the leave-one-out shortcut

1

n

n∑
i=1

(
yi − f̂−i(xi)

)2
=

1

n

n∑
i=1

[
yi − f̂(xi)
1− Sii

]2

For linear fitting methods, generalized cross-validation is defined as

1

n

n∑
i=1

[
yi − f̂(xi)

1− trace(S)/n

]2
This is a computationally efficient alternative to cross-validation
(and it is used whether or not the leave-one-out shortcut holds)
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Cross-validation for structured problems

In choosing the K folds at random, we are assuming, more or less,
that the training pairs (xi, yi), i = 1, . . . n are exchangeable

This is definitely not true in problems in which there is structure in
the training inputs x1, . . . xn

E.g., suppose that the predictor measurements x1, . . . xn
I are taken across timepoints

I correspond to locations on a line

I correspond to pixel locations in an image

I are spatially related to one another

Cross-validation for such structured problems is usually tricky, and
must be done with care
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Example: cross-validation for smoothing splines

Here xi ∈ R, real-valued inputs. Recall that the smoothing spline
estimator is

f̂λ = argmin
f

n∑
i=1

(
yi − f(xi)

)2
+ λ ·

∫ (
f ′′(x)

)2
dx

where λ is the tuning parameter
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Here the training pairs are not really
exchangeable, because our estima-
tor f̂ smooths across inputs xi

So, e.g., it would be bad to have all
xi ≥ 0.8 in one fold
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One idea is to create folds that respect ordering: sort the inputs
x1, . . . xn, and for K-fold cross-validation, take

I Fold 1: points 1,K + 1, 2K + 1, . . .

I Fold 2: points 2,K + 2, 2K + 2, . . .

I . . .

I Fold K: points K, 2K, 3K, . . .

E.g., for 4-fold cross-validation:

x 1 2 3 4 1 2 3 4 1 2 x● ● ● ● ● ● ● ● ● ● ● ●

(We might also leave off the first and last points from any fold,
and always include them in the training sets in each iteration of
cross-validation)
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For our running smoothing spline example, we performed 5-fold
cross-validation, in this structured way

Usual rule
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The usual rule selects a model with 27 degrees of freedom
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One standard error rule
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The one standard error rule selects a model with 9 degrees of
freedom
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Cross-validation is a general tool

So far we’ve looked at cross-validation for estimation under
squared error loss, but it applies much more broadly than this

For an arbitrary loss `(yi, f̂(xi)), the cross-validation estimate of
prediction error under ` is

1

n

K∑
k=1

∑
i∈Fk

`
(
yi, f̂

−k(xi)
)

E.g., for classification, each yi ∈ {0, 1}, and we might want to use
the 0-1 loss

`
(
yi, f̂(xi)

)
=

{
0 yi = f̂(xi)

1 yi 6= f̂(xi)

Cross-validation now gives us an estimate of misclassification error
for a new observation. Usually in cross-validation for classification
we try to balance the folds
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Cross-validation alternatives

Cross-validation is a highly popular tool, but it’s certainly not the
only way to choose tuning parameters. There’s also:

I The bootstrap

I Information criteria like AIC, BIC, RIC

I SURE (Stein’s Unbiased Risk Estimate)

I SRM (Structural Risk Minimization)

I Stability-based methods

I Theoretically-guided choices (problem specific)

Chapter 7 of ESL provides a good review of most of these methods
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Recap: model assessment, more cross-validation

Model assessment is the goal of estimating the prediction error of
(typically a fixed) model. This is a different goal than model
selection; e.g., if the cross-validation error curve has the same
general shape as does the prediction error curve, we can do well at
model selection, but unless it matches the values of the prediction
error curve closely, we won’t do well with model assessment

The bias-variance tradeoff is present in the choice of K for K-fold
cross-validation. Typically K = 5 or K = 10 is a favorable choice

For problems in which the input points have structure, choosing
the folds randomly may be a bad idea. Here cross-validation must
be performed with care. E.g., for smoothing splines, we can form
(nonrandom) folds based on the order of the inputs

There are any alternatives to cross-validation (but perhaps none as
simple and broadly applicable)
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Next time: classification

Now we only need to predict 0 or 1 ... does this make the problem
easier?
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