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Classification

Classification is a predictive task in which the response takes
values across discrete categories (i.e., not continuous), and in the
most fundamental case, two categories

Examples:

I Predicting whether a patient will develop breast cancer or
remain healthy, given genetic information

I Predicting whether or not a user will like a new product, based
on user covariates and a history of his/her previous ratings

I Predicting the region of Italy in which a brand of olive oil was
made, based on its chemical composition

I Predicting the next elected president, based on various social,
political, and historical measurements
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Similar to our usual setup, we observe pairs (xi, yi), i = 1, . . . n,
where yi gives the class of the ith observation, and xi ∈ Rp are
the measurements of p predictor variables

Though the class labels may actually be yi ∈ {healthy, sick} or
yi ∈ {Sardinia, Sicily, ...}, but we can always encode them as

yi ∈ {1, 2, . . .K}

where K is the total number of classes

Note that there is a big difference between classification and
clustering; in the latter, there is not a pre-defined notion of class
membership (and sometimes, not even K), and we are not given
labeled examples (xi, yi), i = 1, . . . n, but only xi, i = 1, . . . n
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Constructed from training data (xi, yi), i = 1, . . . n, we denote our
classification rule by f̂(x); given any x ∈ Rp, this returns a class
label f̂(x) ∈ {1, . . .K}

As before, we will see that there are two different ways of assessing
the quality of f̂ : its predictive ability and interpretative ability

E.g., train on (xi, yi), i = 1, . . . n,
the data of elected presidents
and related feature measurements
xi ∈ Rp for the past n elections,
and predict, given the current fea-
ture measurements x0 ∈ Rp, the
winner of the current election

In what situations would we care more about prediction error? And
in what situations more about interpretation?
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Binary classification and linear regression

Let’s start off by supposing that K = 2, so that the response is
yi ∈ {1, 2}, for i = 1, . . . n

You already know a tool that you could potentially use in this case
for classification: linear regression. Simply treat the response as if
it were continuous, and find the linear regression coefficients of the
response vector y ∈ Rn onto the predictors, i.e.,

β̂0, β̂ = argmin
β0∈R, β∈Rp

n∑
i=1

(yi − β0 − xTi β)2

Then, given a new input x0 ∈ Rp, we predict the class to be

f̂LS(x0) =

{
1 if β̂0 + xT0 β̂ ≤ 1.5

2 if β̂0 + xT0 β̂ > 1.5
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(Note: since we included an intercept term in the regression, it
doesn’t matter whether we code the class labels as {1, 2} or {0, 1},
etc.)

In many instances, this actually works reasonably well. Examples:
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Overall, using linear regression in this way for binary classification is
not a crazy idea. But how about if there are more than 2 classes?
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Linear regression of indicators

This idea extends to the case of more than two classes. Given K
classes, define the indicator matrix Y ∈ Rn×K to be the matrix
whose columns indicate class membership; that is, its jth column
satisfies Yij = 1 if yi = j (observation i is in class j) and Yij = 0
otherwise

E.g., with n = 6 observations and K = 3 classes, the matrix

Y =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 ∈ R
6×3

corresponds to having the first two observations in class 1, the next
two in class 2, and the final 2 in class 3
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To construct a prediction rule, we regress each column Yj ∈ Rn
(indicating the jth class versus all else) onto the predictors:

β̂j,0, β̂j = argmin
βj,0∈R, βj∈Rp

n∑
i=1

(Yij − β0,j − βTj xi)2

Now, given a new input x0 ∈ Rp, we compute

β̂0,j + xT0 β̂j , j = 1, . . .K

take predict the class j that corresponds to the highest score. I.e.,
we let each of the K linear models make its own prediction, and
then we take the strongest. Formally,

f̂LS(x0) = argmax
j=1,...K

β̂0,j + xT0 β̂j
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The decision boundary between any two classes j, k are the values
of x ∈ Rp for which

β̂0,j + xT β̂j = β̂0,k + xT β̂k

i.e., β̂0,j − β̂0,k + (β̂j − β̂k)Tx = 0

This defines a (p−1)-dimensional
affine subspace in Rp. To one
side, we would always predict class
j over k; to the other, we would
always predict class k over j

For K classes total, there are
(
K
2

)
= K(K−1)

2 decision boundaries
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Ideal result
What we’d like to see when we use linear regression for a 3-way
classification (from ESL page 105):

The plotted lines are the decision boundaries between classes 1 and
2, and 2 and 3 (the decision boundary between classes 1 and 3
never matters)
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Actual result
What actually happens when we use linear regression for this 3-way
classification (from ESL page 105):

The decision boundaries between 1 and 2 and between 2 and 3 are
the same, so we would never predict class 2. This problem is called
masking (and it is not uncommon for moderate K and small p)
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Why did this happen?
Projecting onto the line joining the three class centroids gives
some insight into why this happened (from ESL page 106):
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Statistical decision theory

Let C be a random variable giving the class label of an observation
in our data set. A natural rule would be to classify according to

f(x) = argmax
j=1,...K

P(C = j|X = x)

This predicts the most likely class, given the feature measurements
X = x ∈ Rp. This is called the Bayes classifier, and it is the best
that we can do (think of overlapping classes)

Note that we can use Bayes’ rule to write

P(C = j|X = x) =
P(X = x|C = j) · P(C = j)

P(X = x)

Let πj = P(C = j) be the prior probability of class j. Since the
Bayes classifier compares the above quantity across j = 1, . . .K
for X = x, the denominator is always the same, hence

f(x) = argmax
j=1,...K

P(X = x|C = j) · πj
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Linear discriminant analysis

Using the Bayes classifier is not realistic as it requires knowing the
class conditional densities P(X = x|C = j) and prior probabilities
πj . But if estimate these quantities, then we can follow the idea

Linear discriminant analysis (LDA) does this by assuming that the
data within each class are normally distributed:

hj(x) = P(X = x|C = j) = N(µj ,Σ) density

We allow each class to have its own mean µj ∈ Rp, but we assume
a common covariance matrix Σ ∈ Rp×p. Hence

hj(x) =
1

(2π)p/2det(Σ)1/2
exp

{
− 1

2
(x− µj)TΣ−1(x− µj)

}
So we want to find j so that P(C = j|X = x) · πj = hj(x) · πj is
the largest
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Since log(·) is a monotone function, we can consider maximizing
log(hj(x)πj) over j = 1, . . .K. We can define the rule:

fLDA(x) = argmax
j=1,...K

= argmax
j=1,...K

= argmax
j=1,...K

= argmax
j=1,...K

δj(x)

We call δj(x), j = 1, . . .K the discriminant functions. Note

δj(x) = xTΣ−1µj −
1

2
µTj Σ−1µj + log πj

is just an affine function of x
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In practice, given an input x ∈ Rp, can we just use the rule fLDA

on the previous slide? Not quite! What’s missing: we don’t know
πj , µj , and Σ. Therefore we estimate them based on the training
data xi ∈ Rp and yi ∈ {1, . . .K}, i = 1, . . . n, by:

I π̂j = nj/n, the proportion of observations in class j
I µ̂j = 1

nj

∑
yi=j

xi, the centroid of class j

I Σ̂ = 1
n−K

∑K
j=1

∑
yi=j

(xi − µ̂j)(xi − µ̂j)T , the pooled sample
covariance matrix

(Here nj is the number of points in class j)

This gives the estimated discriminant functions:

δ̂j(x) = xT Σ̂−1µ̂j −
1

2
µ̂Tj Σ̂−1µ̂j + log π̂j

and finally the linear discriminant analysis rule,

f̂LDA(x) = argmax
j=1,...K

δ̂j(x)
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LDA decision boundaries

The estimated discriminant functions

δ̂j(x) = xT Σ̂−1µ̂j −
1

2
µ̂Tj Σ̂−1µ̂j + log π̂j

= aj + bTj x

are just affine functions of x. The decision boundary between
classes j, k is the set of all x ∈ Rp such that δ̂j(x) = δ̂k(x), i.e.,

aj + bTj x = ak + bTk x

This defines an affine subspace
in x:

aj − ak + (bj − bk)Tx = 0
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Example: LDA decision boundaries

Example of decision boundaries from LDA (from ESL page 109):

fLDA(x) f̂LDA(x)

Are the decision boundaries the same as the perpendicular bisectors
(Voronoi boundaries) between the class centroids? (Why not?)
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LDA computations, usages, extensions

The decision boundaries for LDA are useful for graphical purposes,
but to classify a new point x0 ∈ Rp we don’t use them—we simply
compute δ̂j(x0) for each j = 1, . . .K

LDA performs quite well on a wide variety of data sets, even when
pitted against fancy alternative classification schemes. Though it
assumes normality, its simplicity often works in its favor. (Why?
Think of the bias-variance tradeoff)

Still, there are some useful extensions of LDA. E.g.,

I Quadratic discriminant analysis: using the same normal
model, we now allow each class j to have its own covariance
matrix Σj . This leads to quadratic decision boundaries

I Reduced-rank linear discriminant analysis: we essentially
project the data to a lower dimensional subspace before
performing LDA. We will study this next time
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Example: olive oil data
Example: n = 572 olive oils, each made in one of three regions of
Italy. On each observation we have p = 8 features measuring the
percentage composition of 8 different fatty acids. (Data from the
olives data set from the R package classifly)

From the lda function in the MASS package:
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This looks nice (seems that the observations are separated into
classes), but what exactly is being shown? More next time...
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Recap: linear regression of indicators, linear discriminant
analysis

In this lecture, we introduced the task of classification, a prediction
problem in which the outcome is categorical

We can perform classification for any total number of classes K by
simply performing K separate linear regressions on the appropriate
indicator vectors of class membership. However, there can be
problems with this—when K > 2, a common problem is masking,
in which one class is never predicted at all

Linear discriminant analysis also draws linear decision boundaries
but in a smarter way. Statistical decision theory tells us that we
really only need to know the class conditional densities and the
prior class probabilities in order to perform classification. Linear
discriminant analysis assumes normality of the data within each
class, and assumes a common covariance matrix; it then replaces
all unknown quantities by their sample estimates
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Next time: more linear discriminant analysis; logistic
regression

Logistic regression is a natural extension of the ideas behind linear
regression and linear discriminant analysis.
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