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Reminder: linear discriminant analysis

Last time we defined the Bayes classifier in the population, for the
class label C' € {1,... K'} and feature vector X € RP, as

e
f(z) = argmax P(C = j|X = x) S ) -
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where m; = P(C = j) is the prior probability of class j

Linear discriminant analysis approximates this rule by modeling the
conditional class densities as multivariate normals:
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hj(:c) = P(X =z|C =j) = N(yj, Y}) density

l.e., each class 7 has its own mean p; € R?, but shares a common
covariance matrix > € RP*P




We then replace 7, 11, 2 by their sample estimates, based on
labeled observations y; € {1,... K}, z; e RP, i =1,...n,
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The rule then reduces to

FEPA (L) = argmax 8;(x)
/ 7=1,..K

where Sj (x) is the estimated discriminant function of class j,
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LDA computations and sphering
Note that LDA equivalently minimizes over j = 1,... K,
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It helps to factorize )y (i.e., compute its eigendecomposition):
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where U € RP*P has orthonormal columns (and rows), and
D = diag(dy,...dp) with d; > 0 for each j. Then we have
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Hence the LDA procedure can be described as: -

1.

2
3.
4
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Compute the sample estimates 7, [y 2 :j/”’ §d
. Factor 3, asin ¥ = UDUT HMi

Transform the class centroids fi; = D~'/2UT ji;
. Given any point z € RP, transform to & = 1/2UTZC c R?,

and then classify according to the nearest centroid in the
transformed space, adjusting for class proportions—this is the
class j for which 1||Z — fi;|3 — log #; is smallest

What is this transformation doing? Think about applying it to the
observations:

r :D_l/zUTxi, zzl,n

This is basically sphering the data points, because if we think of
z € RP were a random variable with covariance matrix 3, then

Cov(D~Y2UTeg) = DV2UTSUD V2 =1




Linear subspace spanned by sphered centroids

LDA compares the quantity 3| — /1;]|3 — log #; across the classes
j=1,... K. Consider the affine subspace M C RP spanned by the
transformed centroids fi1, ... ix, which has dimension K — 1

"R®  For any & € RP, we can decompose
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The second term doesn’t depend on j

What this is telling us: the LDA classification rule is unchanged if
we project the points to be classified onto M, since the distances
orthogonal to M don't matter




LDA procedure summarized

We can think of the LDA procedure as:

1. Compute the sample estimates 75, fi;, 2

2. Make two transformations: first, sphere the data points, based
on factoring 33 second, project down to the affine subspace
spanned by the sphered centroids. This can all be summarized
a single linear transformation A € RK-Dxp

3. Given any point z € R?, transform to & = Az € R*~, and
classify according to the class 7 = 1, ... K for which
| A (
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s smallest, where [i; = Ajfi;




This way of describing LDA may sound more complicated, but
actually, it's much simpler! After applying A, we've reduced the
problem from p to K — 1 dimensions, and then it's basically
nearest centroid classification:
FUPA(2) = angmin +|z — [} — log #,
j=1,.K 2

(The only distinction being that we adjust for class proportions)

In R, the matrix A is exactly what is returned by the scaling

component from the 1da function in the MASS package




Example: olive oil data

Recall our olive oil example: n = 572 olive oils, made in one of
three regions of ltaly. For each observation we have p = 8 features
measuring the percentage composition of 8 different fatty acids
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These are the transformed data points Ax; € R2, i = 1,...572.
Note that here M is a 2-dimensional subspace, since there are
K = 3 classes, and the transformation has dimension A € R2*%8




Decision boundaries revisited

Working in the transformed space makes it easier to draw decision
boundaries. Now the decision boundary between classes j and % is
the set of all z € R¥~! such that

1 . . N .
‘2“”2 — Mj“% — IOng = 5”2 — ﬂk“% — log 7y,

After some calculation, this is simply
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E.g.. when K = 3, so that z € R, this is just the line given by
2 =a + b2y, where
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Example: olive oil data

Decision boundaries, using the formula that we derived:
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Reduced-rank linear discriminant analysis

The dimension reduction from p to K — 1 was exact, in that we
didn't change the LDA rule at all. Why might we want to reduce
further to a dimension L < K — 1, if K is large?

» Visualization

» Regularization

Reduced-rank linear discriminant analysis is a nice way to project
down to lower than K — 1 dimensions. It chooses the lower
dimensional subspaces so as to spread out the centroids as much
as possible

Does this sound like principal components analysis? It's not a
coincidence! These dimensions are computed by looking at the
principal components directions of the matrix of transformed
centroids
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Example: vowel data

Example: this experiment recorded n = 528 instances of spoken
words. The words fall into K = 11 classes ( “vowels" ), and there
are p = 10 features measured on each instance

Reduced-rank linear discriminant analysis in 2 dimensions:
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Coordinate t for Training Data

(From ESL page 107)
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As the rank increases, the centroids become less spread out:
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(From ESL page 115)

14



Reduced-rank LDA as regularization

If the number of classes K is large, then projecting down to a
dimension L. < K — 1 can actually be helpful in terms of applying
regularization. This is because some dimensions may not providing
a lot of separation between the classes, but just noise. (You should
be thinking of the bias-variance tradeoff!)

Reduced-rank LDA in L dimensions delivers a matrix A € RE*P,
and classification of a point £ € RP proceeds as usual, by first
transforming to £ = Ax, and then choosing the class 7 =1,... K

that minimizes 1
~ ~ 119 ~
5!!9: — fi5 |3 + log 7t;

where fi; = Afi;. Smaller L means more regularization

For the 1da function in R, the matrix A € REX*P above corresponds
to the (transpose) of the first L columns of the scaling matrix
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Example: vowel data

For the vowel data set, there were actually n = 462 points held out
as a test set. Here is the test error rate (and training error rate) of
reduced-rank LDA as a function of L:
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Original form of LDA for two classes

Let's go back to the original form of LDA, and consider just two
classes, for simplicity. Recall that LDA assumes that the predictor
variables are normally distributed within each class:

P(X mxl(]—]) N(uj, >)) density, j=1,2

—j|X =2)= P(X=z|C=j)P C—Jf

Bayes’ rule then gives us P(C P(X=1)

Now plugging in the normal density

e ;zf"f exp (— ol oou)
(R )
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— M(J "’J‘ll A‘Mt *«/{41«5’ -4"17,'\!"‘ @, M'L;) 5;'{
That is, the log odds of class 1 versus 2 is a linear function of .
Estimating 7;, fi;, 2 amounts to estimating dg, &. A question:
why don’'t we estimate these coefficients directly?
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Logistic regression

In logistic regression, we assume that

1Og{P(C =1|X =)

. T
P(O:2\X:x)}_-ﬁo+ﬁx

for some unknown Bo € R, B € RP, which we will estimate directly

Note that P(C =2|X =z)=1—- P(C =1|X = z), and

SRR »

log (___p_) = By + B:x & *"‘E— = exp( Bt BTx)

l—p
<> P =1 o QF(@"*»?*\KR}“
Lt exp(R. +4Tx)

Therefore our assumption is that

B B B eXp(ﬁo -+ BTQL‘)
PIC=1X =2) = 1+ exp(Bo + Blx)
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Estimating logistic regression coefficients

Suppose that we are given a sample (z;,¥;), 1 = 1,...n. Here y;
denotes the class € {1,2} of the ith observation. Assume that the

class labels are conditionally independent given z1,...z,. Then

n

L(Po,P) = [[P(C =ulX =)

=1

the likelihood of these n observations, so the log likelihood is

Now for convenience, we define the indicator
= 1 ify =1
U; =
0 ify =2
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The log likelihood can be written as

(o, B) = Zlog P(C = y| X = x))
exe( B- *’ﬁ K¢ )
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The coefﬁaents are estimated by maximizing the likelihood,

fo.f = angmase 3" {us- (Ao 87— log (1-+exp(fo +57,)

BeR,BERP =1

Note that logistic regression is somewhat more general than LDA
in that we don’t need to assume normality to estimate the linear
coefficients
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Recap: reduced-rank LDA and logistic regression

In this lecture we saw that the usual linear discriminant analysis for
prediction in p dimensions can be transformed to a much simpler
rule in K — 1 dimensions, where K is the number of classes

This transformation was achieved by first sphering the data points,
and then projecting onto the affine subspace spanned by the
sphered class centroids. The final prediction rule is basically
nearest centroid classification, except for the factor adjusting for
different class proportions

Further transformations, to dimensions L < K — 1, can also be
performed; this is called reduced-rank linear discriminant analysis.
Doing so can be helpful for visualization or regularization purposes

Logistic regression models the log odds of being in class 1 versus 2
as a linear function of the features. It is fit by maximum likelihood
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Next time: more logistic regression; nearest-neighbors and
prototypes

Classification by K -means clustering: using an unsupervised tool
for a supervised task

Training Error: 0.170
Test Error: 0.243

(From ESL page 464)
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