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Reminder: logistic regression

Last lecture, we learned logistic regression, which assumes that the
log odds is linear in x ∈ Rp:

log
{P(C = 1|X = x)

P(C = 2|X = x)

}
= β0 + βTx

This is equivalent to

P(C = 1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)

Given a sample (xi, yi), i = 1, . . . n, we fit the coefficients by
maximizing the log likelihood

β̂0, β̂ = argmax
β0∈R, β∈Rp

n∑
i=1

{
ui ·(β0+βTxi)−log

(
1+exp(β0+βTxi)

)}
where ui = 1 if yi = 1 and ui = 0 if yi = 2 (indicator for class 1)
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Classification by logistic regression

After computing β̂0, β̂, classification of an input x ∈ Rp is given by

f̂LR(x) =

{
1 if β̂0 + β̂Tx > 0

2 if β̂0 + β̂Tx ≤ 0

Why? Recall that the log odds between class 1 and class 2 is
modeled as

log
{P(C = 1|X = x)

P(C = 2|X = x)

}
= β0 + βTx

Therefore the decision boundary between classes 1 and 2 is the set
of all x ∈ Rp such that

β̂0 + β̂Tx = 0

This is a (p− 1)-dimensional affine subspace of Rp; i.e., this is a
point (threshold) in R1, or a line in R2
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Interpretation of logistic regression coefficients

How do we interpret coefficients in a logistic regression? Similar to
our interpretation for linear regression. Let

Ω = log
{P(C = 1|X = x)

P(C = 2|X = x)

}
be the log odds. Then logistic regression provides the estimate

Ω̂ = β̂Tx = β̂0 + β̂1x1 + β̂2x2 + . . .+ β̂pxp

Hence, the proper interpretation of β̂j : increasing the jth predictor
xj by 1 unit, and keeping all other predictors fixed, increases

I The estimated log odds of class 1 by an additive factor of β̂j

I The estimated odds of class 1 by a multiplicative factor of eβ̂j

(Note: it may not always be possible for a predictor xj to increase
with the other predictors fixed!)
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Example: South African heart disease data

Example (from ESL section 4.4.2): there are n = 462 individuals
broken up into 160 cases (those who have coronary heart disease)
and 302 controls (those who don’t). There are p = 7 variables
measured on each individual:

I sbp (systolic blood pressure)

I tobacco (lifetime tobacco consumption in kg)

I ldl (low density lipoprotein cholesterol)

I famhist (family history of heart disease, present or absent)

I obesity

I alcohol

I age
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Pairs plot (red are cases, green are controls):
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Fitted logistic regression model:

The Z score is the coefficient divided by its standard error. There
is a test for significance called the Wald test

Just as in linear regression, correlated variables can cause problems
with interpretation. E.g., sbp and obseity are not significant, and
obesity has a negative sign! (Marginally, these are both significant
and have positive signs)
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After repeatedly dropping the least significant variable and
refitting:

This procedure was stopped when all variables were significant

E.g., interpretation of tobacco coefficient: increasing the tobacco
usage over the course of one’s lifetime by 1kg (and keeping all
other variables fixed) multiplies the estimated odds of coronary
heart disease by exp(0.081) ≈ 1.084, or in other words, increases
the odds by 8.4%

8



LDA versus logistic regression

As we remarked earlier, both LDA and logistic regression model the
log odds as a linear function of the predictors x ∈ Rp

Linear discriminant analysis: log
{P(C = 1|X = x)

P(C = 2|X = x)

}
= α0 + αTx

Logistic regression: log
{P(C = 1|X = x)

P(C = 2|X = x)

}
= β0 + βTx

where for LDA we form α̂0, α̂ based on estimates π̂j , µ̂j , Σ̂ (easy!),

and for logistic regression we estimate β̂0, β̂ directly based on
maximum likelihood (harder)

This is what leads to linear decision boundaries for each method

Careful inspection (or simply comparing them in R) shows that the
estimates α̂0, β̂0 and α̂, β̂ are different. So how do they compare?
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Generally speaking, logistic regression is more flexible because it
doesn’t assume anything about the distribution of X. LDA
assumes that X is normally distributed within each class, so that
its marginal distribution is a mixture of normal distributions, hence
still normal:

X ∼
K∑
j=1

πjN(µj ,Σ)

This means that logistic regression is more robust to situations in
which the class conditional densities are not normal (and outliers

On the other side, if the true class conditional densities are normal,
or close to it, LDA will be more efficient, meaning that for logistic
regression to perform comparably it will need more data

In practice they tend to perform similarly in a variety of situations
(as claimed by the ESL book on page 128)
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Extensions

Logistic regression can be adapted for multiple classes, K > 2. We
model the log odds of each class to a base class, say, the last one:

log
{ P(C = j|X = x)

P(C = K|X = x)

}
= β0,j + βTj x

We fit the coefficients, j = 1, . . .K, jointly by maximum likelihood

For high-dimensional problems with p > n, we run into problems
with LDA in estimating the p× p covariance matrix Σ: with only n
observations, out estimate Σ̂ will not be invertible. Regularized
LDA remedies this by shrinking Σ̂ towards the identity, using the
estimate c · Σ̂ + (1− c) · I for some 0 < c < 1

For regularization in logistic regression, we can subtract a penalty,
e.g., an `1 penalty: λ‖β‖1, from the maximum likelihood criterion,
similar to what we did in linear regression
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Model-free classification

It is possible to perform classification in a model-free sense, i.e.,
without writing down any assumptions concerning the distribution
that generated the data

The downside: these methods are essentially a black box for
classification, in that they typically don’t provide any insight into
how the predictors and the response are related

The upside: they can work well for prediction in a wide variety of
situations, since they don’t make any real assumptions

These procedures also typically have tuning parameters that need
to be properly tuned in order for them to work well (for this we can
use cross-validation)
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Classification by k-nearest-neighbors

Perhaps the simplest prediction rule, given labeled data (xi, yi),
i = 1 . . . n, is to predict an input x ∈ Rp according to its nearest-
neighbor:

f̂1−NN(x) = yi such that ‖xi − x‖2 is smallest

A natural extension is to consider the k-nearest-neighbors of x, call
them x(1), . . . x(k), and then classify according to a majority vote:

f̂k−NN(x) = j such that

k∑
i=1

1{y(i) = j} is largest

What is more adaptive, 1-nearest-neighbor or 9-nearest-neighbors?
What is the n-nearest-neighbors rule?
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Example: 7-nearest-neighbors classifier

Example: classification with 7-nearest-neighbors (ESL page 467):

Could linear discriminant analysis or logistic regression have drawn
decision boundaries close to the Bayes boundary?
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Disadvantages of k-nearest-neighbors

Besides the fact that it yields limited insight into the relationship
between the predictors and classes, there are disadvantages of
using a k-nearest-neighbors rule having to do with computation

For one, we need the entire data set (xi, yi), i = 1, . . . n whenever
we want to classify a new point x ∈ Rp. This could end up being
very prohibitive, especially if n and/or p are large. On the other
hand, for prediction with LDA or logistic regression, we only need
the linear coefficients that go into the prediction rule

Even with the entire data set at hand, the prediction rule is slow.
It essentially requires comparing distances to every point in the
training set. There are somewhat fancy ways of storing the data to
make this happen as fast a possible, but they’re still pretty slow
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Classification by K-means clustering

Instead of using every point in the data set (xi, yi), i = 1, . . . n, we
can try to summarize this data set, and use this for classification

How would we do this? We’ve covered many unsupervised learning
techniques; one of the first was K-means clustering. Consider the
following procedure for classification:

I Use R-means clustering to fit R centroids c1(j), . . . cR(j)
separately to the data within each class j = 1, . . .K;

I Given an input x ∈ Rp, classify according to the class of the
nearest centroid:

f̂R−means(x) = j such that ‖x− ci(j)‖ is smallest

for some i = 1, . . . R

We only need the K ·R centroids c1(j), . . . cK(j), j = 1, . . .K for
classification
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Example: 5-means clustering for classification

Example: same data set as before, now we use 5-means clustering
within each class, and classify according to the closest centroid
(from ESL page 464):
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Learning vector quantization

One downside of K-means clustering used in this context is that,
for each class, the centroids are chosen without any say from other
classes. This can result in centroids being chosen close to decision
boundaries, which is bad

Learning vector quantization1 takes this into consideration, and
places R prototypes for each class strategically away from decision
boundaries. Once these prototypes have been chosen, classification
proceeds in the same way as before (according to the class of the
nearest prototype)

Given (xi, yi), i = 1, . . . n, learning vector quantization chooses the
prototypes as follows:

1. Choose R initial protoypes c1(j), . . . cR(j) for j = 1, . . .K
(e.g., sample R training points at random for each class)

1Kohonen (1989), “Self-Organization and Associative Memory”
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2. Choose a training point x` at random. Let ci(j) be the closest
protoype to x`. If:

(a) y` = j, then move ci(j) closer to x`:

ci(j)← ci(j) + ε(x` − ci(j))

(b) y` 6= j, then move ci(j) away from x`:

ci(j)← ci(j)− ε(x` − ci(j))

3. Repeat step 2, decreasing ε→ 0 with each iteration

The quantity ε ∈ (0, 1) above is called the “learning rate”. It can
be taken, e.g., as ε = 1/r, where r is the iteration number

Learning vector quantization can sometimes perform better than
classification by K-means clustering, but other times they perform
very similarly (e.g., in the previous example)
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Tuning parameters

Each one of these methods exhbitis a tuning parameter that needs
to be chosen. E.g.,

I the number k of neighbors in k-nearest-neighbors

I the number R of centroids in R-means clustering

I the number R of prototypes in learning vector quantization

Think about the bias-variance tradeoff at play here—for each
method, which direction means higher model complexity?

As before, a good method for choosing tuning parameter values is
cross-validation, granted that we’re looking to minimize prediction
error
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Example: cross-validation for k-nearest-neighbors

Example: choosing the number of neighbors k using 10-fold cross-
validation (from ESL page 467):
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Classification tools in R

The classification tools we’ve learned so far, in R:

I Linear discriminant analysis: use the lda function in the MASS

package. For reduced-rank LDA of dimension L, take the first
L columns of the scaling matrix

I Logistic regression: use the glm function in the base package.
It takes the same syntax as the lm function; make sure to set
family="binomial". Can also apply regularization using
glmnet

I k-nearest-neighbors: use the knn function in the class

package

I K-means clustering: use the kmeans function in the stats

package for the clustering; classification to the nearest
centroid can then be done manually

I Learning vector quantization: use the lvq1 function in the
class package. Here the list of protoypes is called the
“codebook” and passed as the codebk argument
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Recap: logistic regression, model-free classification
In this lecture, we learned more about logistic regression. We saw
that is draws linear decision boundaries between the classes (linear
in the predictor variable x ∈ Rp), and learned how to interpret the
coefficients, in terms of a multiplicative change in the odds ratio

We also compared logistic regression and LDA. Essentially, logistic
regression is more robust because it doesn’t assume normality, and
LDA performs better if the normal assumption is (close to) true

We learned several model-free classification techniques. Typically
these don’t help with understanding the relationship between the
predictors and the classes, but they can perform well in terms of
prediction error. The k-nearest-neighbors method classifies a new
input by looking at its k closest neighbors in the training set, and
then classifying according to a majority vote among their labels.
K-means clustering and learning vector quantization represent
each class by a number of centroids or prototypes, and then use
these to classify, and so they are more computationally efficient
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Next time: tree-based methods

Classification trees are popular because they are easy to interpret

(From ESL page 315)
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