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Tree-based methods

Tree-based based methods for predicting y from a feature vector
x ∈ Rp divide up the feature space into rectangles, and then fit a
very simple model in each rectangle. This works both when y is
discrete and continuous, i.e., both for classification and regression

Rectangles can be achieved by making successive binary splits on
the predictors variables X1, . . . Xp. I.e., we choose a variable Xj ,
j = 1, . . . p, divide up the feature space according to

Xj ≤ c and Xj > c

Then we proceed on each half

For simplicity, consider classification first (regression later). If a
half is “pure”, meaning that it mostly contains points from one
class, then we don’t need to continue splitting; otherwise, we
continue splitting
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Example: simple classification tree

Example: n = 500 points in p = 2 dimensions, falling into classes 0
and 1, as marked by colors

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

Does dividing up the feature space into rectangles look like it
would work here?
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x.1< 0.5998
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Example: HCV treatment flow chart

(From http://hcv.org.nz/wordpress/?tag=treatment-flow-chart)
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Classification trees

Classification trees are popular because they are interpretable, and
maybe also because they mimic the way (some) decisions are made

Let (xi, yi), i = 1, . . . n be the training data, where yi ∈ {1, . . .K}
are the class labels, and xi ∈ Rp measure the p predictor variables.
The classification tree can be thought of as defining m regions
(rectangles) R1, . . . Rm, each corresponding to a leaf of the tree

We assign each Rj a class label cj ∈ {1, . . .K}. We then classify a
new point x ∈ Rp by

f̂ tree(x) =

m∑
j=1

cj · 1{x ∈ Rj} = cj such that x ∈ Rj

Finding out which region a given point x belongs to is easy since
the regions Rj are defined by a tree—we just scan down the tree.
Otherwise, it would be a lot harder (need to look at each region)
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Example: regions defined by a tree

(From ESL page 306)
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Example: regions not defined a tree

(From ESL page 306)
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Predicted class probabilities

With classification trees, we can also get not only the predicted
classes for new points but also the predicted class probabilties

Note that each region Rj contains some subset of the training
data (xi, yi), i = 1, . . . n, say, nj points. The predicted class cj is
just most common occuring class among these points. Further, for
each class k = 1, . . .K, we can estimate the probability that the
class label is k given that the feature vector lies in region Rj ,
P(C = k|X ∈ Rj), by

p̂k(Rj) =
1

nj

∑
xi∈Rj

1{yi = k}

the proportion of points in the region that are of class k. We can
now express the predicted class as

cj = argmax
k=1,...K

p̂k(Rj)
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Trees provide a good balance

Model
assumptions?

Estimated
probabilities?

Interpretable? Flexible?

LDA Yes Yes Yes No

LR Yes Yes Yes No

k-NN No No No Yes

Trees No Yes Yes Somewhat

Predicts
well?

LDA Depends on X

LR Depends on X

k-NN
If properly

tuned
Trees ?
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How to build trees?

There are two main issues to consider in building a tree:

1. How to choose the splits?

2. How big to grow the tree?

Think first about varying the depth of the tree ... which is more
complex, a big tree or a small tree? What tradeoff is at play here?
How might we eventually consider choosing the depth?

Now for a fixed depth, consider choosing the splits. If the tree has
depth d (and is balanced), then it has ≈ 2d nodes. At each node
we could choose any of p the variables for the split—this means
that the number of possibilities is

p · 2d

This is huge even for moderate d! And we haven’t even counted
the actual split points themselves
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The CART algorithm
The CART algorithm1 chooses the splits in a top down fashion:
then chooses the first variable to at the root, then the variables at
the second level, etc.

At each stage we choose the split to achieve the biggest drop in
misclassification error—this is called a greedy strategy. In terms of
tree depth, the strategy is to grow a large tree and then prune at
the end

Why grow a large tree and prune,
instead of just stopping at some
point? Because any stopping rule
may be short-sighted, in that a
split may look bad but it may lead
to a good split below it ●
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1Breiman et al. (1984), “Classification and Regression Trees”
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Recall that in a region Rm, the proportion of points in class k is

p̂k(Rm) =
1

nm

∑
xi∈Rm

1{yi = k}.

The CART algorithm begins by considering splitting on variable j
and split point s, and defines the regions

R1 = {X ∈ Rp : Xj ≤ s}, R2 = {X ∈ Rp : Xj > s}

We then greedily chooses j, s by minimizing the misclassification
error

argmin
j,s

([
1− p̂c1(R1)

]
+
[
1− p̂c2(R2)

])
Here c1 = argmaxk=1,...K p̂k(R1) is the most common class in R1,
and c2 = argmaxk=1,...K p̂k(R2) is the most common class in R2

13



Having done this, we now repeat this within each of the newly
defined regions R1, R2. That is, it again considers splitting all
variables j and split points s, within each of R1, R2, this time
greedily choosing the pair that provides us with the biggest
improvement in misclassification error

How do we find the best split s? Aren’t there infinitely many to
consider? No, to split a region Rm on a variable j, we really only
need to consider nm splits (or nm − 1 splits)
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Continuing on in this manner, we
will get a big tree T0. Its leaves
define regions R1, . . . Rm. We
then prune this tree, meaning that
we collapse some of its leaves into
the parent nodes

For any tree T , let |T | denote its number of leaves. We define

Cα(T ) =

|T |∑
j=1

[
1− p̂cj (Rj)

]
+ α|T |

We seek the tree T ⊆ T0 that minimizes Cα(T ). It turns out that
this can be done by pruning the weakest leaf one at a time. Note
that α is a tuning parameter, and a larger α yields a smaller tree.
CART picks α by 5- or 10-fold cross-validation
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Example: simple classification tree
Example: n = 500, p = 2, and K = 2. We ran CART:

|x.2< 0.111
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To use CART in R, you can use either of the functions rpart or
tree, in the packages of those same names. When you call rpart,
cross-validation is performed automatically; when you call tree,
you must then call cv.tree for cross-validation
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Example: spam data

Example: n = 4601 emails, of which 1813 are considered spam.
For each email we have p = 58 attributes. The first 54 measure
the frequencies of 54 key words or characters (e.g., “free”, “need”,
“$”). The last 3 measure

I the average length of uninterrupted sequences of capitals;

I the length of the longest uninterrupted sequence of capitals;

I the sum of lengths of uninterrupted sequences of capitals

(Data from ESL section 9.2.5)

An aside: how would we possibly get thousands of emails labeled
as spam or not?

This is great! Every time you label an email as spam, gmail has
more training datafg
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Cross-validation error curve for the spam data (from ESL page
314):
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Tree of size 17, chosen by cross-validation (from ESL page 315):
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Other impurity measures

We used misclassification error as a measure of the impurity of
region Rj ,

1− p̂cj (Rj)

But there are other useful measures too: the Gini index:

K∑
k=1

p̂k(Rj)
[
1− p̂k(Rj)

]
,

and the cross-entropy or deviance:

−
K∑
k=1

p̂k(Rj) log
{
p̂k(Rj)

}
.

Using these measures instead of misclassification error is sometimes
preferable because they are more sensitive to changes in class
probabilities. Overall, they are all pretty similar (Homework 6)
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Regression trees

Suppose that now we want to predict a continuous outcome
instead of a class label. Essentially, everything follows as before,
but now we just fit a constant inside each rectangle
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The estimated regression function has the form

f̂ tree(x) =

m∑
j=1

cj · 1{x ∈ Rj} = cj such that x ∈ Rj

just as it did with classification. The quantities cj are no longer
predicted classes, but instead they are real numbers. How would
we choose these? Simple: just take the average response of all of
the points in the region,

cj =
1

nj

∑
xi∈Rj

yi

The main difference in building the tree is that we use squared
error loss instead of misclassification error (or Gini index or
deviance) to decide which region to split. Also, with squared error
loss, choosing cj as above is optimal
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How well do trees predict?
Trees seem to have a lot of things going in the favor. So how is
their predictive ability?

Unfortunately, the answer is not great. Of course, at a high level,
the prediction error is governed by bias and variance, which in turn
have some relationship with the size of the tree (number of nodes).
A larger size means smaller bias and higher variance, and a smaller
tree means larger bias and smaller variance

But trees generally suffer from high variance because they are quite
instable: a smaller change in the observed data can lead to a
dramatically different sequence of splits, and hence a different
prediction. This instability comes from their hierarchical nature;
once a split is made, it is permanent and can never be “unmade”
further down in the tree

We’ll learn some variations of trees have much better predictive
abilities. However, their predictions rules aren’t as transparent

23



Recap: trees for classification and regression
In this lecture, we learned about trees for classification and
regression. Using trees, we divide the feature space up into
rectangles by making successive splits on different variables, and
then within each rectangle (leaf of the tree), the predictive task is
greatly simplified. I.e., in classification, we just predict the most
commonly occuring class, and in regression, we just take the
average response value of points in the region

The space of possible trees is huge, but we can fit a good tree
using a greedy strategy, as is done by the CART algorithm. It also
grows a large tree, and then prunes back at the end, choosing how
much to prune by cross-validation

Trees are model-free and are easy to interpret, but generally
speaking, aren’t very powerful in terms of predictive ability. Next
time we’ll learn some procedures that use trees to make excellent
prediction engines (but in a way we lose interpretability)
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Next time: bagging

Fitting small trees on bootstrapped data sets, and averaging
predictions at the end, can greatly reduce the prediction error
(from ESL page 285):
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