
Bagging

Ryan Tibshirani
Data Mining: 36-462/36-662

April 23 2013

Optional reading: ISL 8.2, ESL 8.7

1



Reminder: classification trees

Our task is to predict the class label y ∈ {1, . . .K} given a feature
vector x ∈ Rp. Classification trees divide the feature space Rp up
into several rectangles, and then assign to each rectangle Rj a
particular predicted class cj :

f̂ tree(x) =

m∑
j=1

cj · 1{x ∈ Rj} = cj such that x ∈ Rj

2



Given training data (xi, yi), i = 1, . . . n, with yi ∈ {1, . . .K} being
the class label and xi ∈ Rp the associated feature vector, the
CART algorithm successively splits the features in a greedy fashion

Its strategy is to grow a large tree and then prune back using
cross-validation. At the end, in each rectangle Rj the predicted
class is simply the majority class:

cj = argmax
k=1,...K

p̂k(Rj)

where p̂k(Rj) is the proportion of points of class k that fall into
region Rj :

p̂k(Rj) =
1

nj

∑
xi∈Rj

1{yi = k}

This gives us predicted class probabilities for each region

3



Example: n = 500 points in p = 2 dimensions, falling into classes 0
and 1 (as marked by colors)

|x.2< 0.111

x.1>=0.4028

x.2>=0.4993

x.1< 0.5998

x.2< 0.598
0

60/0

0
148/0

0
39/0

1
0/71

0
101/0

1
0/81

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

x1

x2

4



Classification trees are popular since they are highly interpretable.
They are also model-free (don’t assume an underlying distribution
for the data)

But they don’t generally give a prediction accuracy competitive
with that of other classifiers (logistic regression, k-nearest-
neighbors, etc.) The reason: trees have somewhat inherently high
variance. The separations made by splits are enforced at all lower
levels of the tree, which means that if the data is perturbed
slightly, the new tree can have a considerably different sequence of
splits, leading to a different classification rule

In this lecture (and the next) we’ll learn of two ways to control the
variance, or stabilize the predictions made by trees. Of course
these solutions aren’t perfect: in doing so, we can greatly improve
prediction accuracy but we suffer in terms of interpretability

5



Joint distribution and Bayes classifier

Suppose that we observe training data (xi, yi), i = 1, . . . n, which
represents n independent draws from some unknown probability
distribution F . E.g., this could be classification data, with
yi ∈ {1, . . .K} being the class label and xi ∈ Rp the associated
feature vector

Note that F describes the joint distribution of X and Y :

PF
{
(X,Y ) = (x, y)

}
Recall that if we knew F , then the best thing to do would be to
simply classify according to the Bayes classifier:

f(x) = argmax
j=1,...K

PF (Y = j|X = x)

= argmax
j=1,...K

PF
{
(X,Y ) = (x, j)

}
6



The bootstrap

The bootstrap1 is a fundamental resampling tool in statistics. The
basic idea underlying the boostrap is that we can estimate the true
F by the so-called empirical distribution F̂

Given the training data (xi, yi), i = 1, . . . n, the empirical
distribution function F̂ is simply

PF̂
{
(X,Y ) = (x, y)

}
=

{
1
n if (x, y) = (xi, yi) for some i

0 otherwise

This is just a discrete probability distribution, putting equal weight
(1/n) on each of the observed training points

1Efron (1979), “Bootstrap Methods: Another Look at the Jacknife”
7



A bootstrap sample of size m from the training data is

(x∗i , y
∗
i ), i = 1, . . .m

where each (x∗i , y
∗
i ) are drawn from uniformly at random from

(x1, y1), . . . (xn, yn), with replacement

This corresponds exactly to m independent draws from F̂ . Hence
it approximates what we would see if we could sample more data
from the true F . We often consider m = n, which is like sampling
an entirely new training set

Note: not all of the training points are represented in a bootstrap
sample, and some are represented more than once. When m = n,
about 36.8% of points are left out, for large n (Homework 6)

8



Bagging

Given a training data (xi, yi), i = 1, . . . n, bagging2 averages the
predictions from classification trees over a collection of boostrap
samples. For b = 1, . . . B (e.g., B = 100), we draw n boostrap
samples (x∗bi , y∗bi ), i = 1, . . . n, and we fit a classification tree
f̂ tree,b on this sampled data set. Then at the end, to classify an
input x ∈ Rp, we simply take the most commonly predicted class:

f̂bag(x) = argmax
k=1,...K

B∑
b=1

1{f̂ tree,b(x) = k}

This is just choosing the class with the most votes. Two options:

I Simple strategy: grow fairly large trees on each sampled data
set, with no pruning

I More involved strategy: prune back each tree as we do with
CART, but use the original training data (xi, yi), i = 1, . . . n
as the validation set, instead of performing cross-validation

2Breiman (1996), “Bagging Predictors”
9



Example: bagging

Example (from ESL 8.7.1): n = 30 training data points, p = 5
features, and K = 2 classes. No pruning used in growing trees:

10



Bagging helps decrease the misclassification rate of the classifier
(evaluated on a large independent test set). Look at the orange
curve:

11



Example: Breiman’s bagging

Example from the original Breiman paper on bagging: comparing
the misclassification error of the CART tree (pruning performed by
cross-validation) and of the bagging classifier (with B = 50):

12



Voting probabilities are not estimated class probabilities

Suppose that we wanted estimated class probabilities out of our
bagging procedure. What about using, for each k = 1, . . .K:

p̂bagk (x) =
1

B

B∑
b=1

1{f̂ tree,b(x) = k}

I.e., the proportion of votes that were for class k?

This is generally not a good estimate. Simple example: suppose
that the true probability of class 1 given x is 0.75. Suppose also
that each of the bagged classifiers f̂ tree,b(x) correctly predicts the

class to be 1. Then p̂bag1 (x) = 1, which is wrong

What’s nice about trees is that each tree already gives us a set of
predicted class probabilities at x: p̂tree,bk (x), k = 1, . . .K. These
are simply the proportion of points in the appropriate region that
are in each class

13



Alternative form of bagging

This suggests an alternative method for bagging. Now given an
input x ∈ Rp, instead of simply taking the prediction f̂ tree,b(x)
from each tree, we go further and look at its predicted class
probabilities p̂tree,bk (x), k = 1, . . .K. We then define the bagging
estimates of class probabilities:

p̂bagk (x) =
1

B

B∑
b=1

p̂tree,bk (x) k = 1, . . .K

The final bagged classifier just chooses the class with the highest
probability:

f̂bag(x) = argmax
k=1,...K

p̂bagk (x)

This form of bagging is preferred if it is desired to get estimates of
the class probabilities. Also, it can sometimes help the overall
prediction accuracy

14



Example: alternative form of bagging

Previous example revisited: the alternative form of bagging
produces misclassification errors shown in green

15



Why is bagging working?

Why is bagging working? Here is a simplified setup with K = 2
classes to help understand the basic phenomenon

Suppose that for a given input x, we have B independent classifiers
f̂ b(x), b = 1, . . . B, and each classifier has a misclassification rate
of e = 0.4. Assume w.l.o.g. that the true class at x is 1, so

P(f̂ b(x) = 2) = 0.4

Now we form the bagged classifier:

f̂bag(x) = argmax
k=1,2

B∑
b=1

1{f̂ b(x) = k}

Let B2 =
∑B

b=1 1{f̂ b(x) = 2} be the number of votes for class 2

16



Notice that
∑B

b=1 1{f̂ b(x) = 2} is a binomial random variable,

B2 ∼ Binom(B, 0.4)

Therefore the misclassification rate of the bagged classifier is

P(f̂bag(x) = 2) = P(B2 ≥ B/2)

As B2 ∼ Binom(B, 0.4), this → 0 as B →∞. In other words, the
bagged classifier has perfect predictive accuracy as the number of
sampled data sets B →∞

So why did the prediction error seem to level off in our examples?
Of course, the caveat here is independence. The classifiers that we
use in practice, f̂ tree,b, are clearly not independent, because they
are fit on very similar data sets (bootstrap samples from the same
training set)

17



Wisdom of crowds

The wisdom of crowds is a concept popularized outside of statistics
to describe the same phenomenon. It is the idea that the collection
of knowledge of an independent group of people can exceed the
knowledge of any one person individually. Interesting example
(from ESL page 287):

18



When will bagging fail?

Now suppose that we consider the same simplified setup as before
(independent classifiers), but each classifier has a misclassification
rate:

P(f̂ b(x) = 2) = 0.6

Then by the same arguments, the bagged classifier has a
misclassification rate of

P(f̂bag(x) = 2) = P(B2 ≥ B/2)

As B2 ∼ Binom(B, 0.6), this → 1 as B →∞! In other words, the
bagged classifier is perfectly inaccurate as the number of sampled
data sets B →∞

Again, the independence assumption doesn’t hold with trees, but
the take-away message is clear: bagging a good classifier can
improve predictive accuracy, but bagging a bad one can seriously
degrade predictive accuracy

19



Disadvantages

It is important to discuss some disadvantages of bagging:

I Loss of interpretability: the final bagged classifier is not a
tree, and so we forfeit the clear interpretative ability of a
classification tree

I Computational complexity: we are essentially multiplying the
work of growing a single tree by B (especially if we are using
the more involved implementation that prunes and validates
on the original training data)

You can think of bagging as extending the space of models. We go
from fitting a single tree to a large group of trees. Note that the
final prediction rule cannot always be represented by a single tree

Sometimes, this enlargement of the model space isn’t enough, and
we would benefit from an even greater enlargement

20



Example: limited model space

Example (from ESL page 288): bagging still can’t really represent
a diagonal decision rule

21



Recap: bagging

In this lecture we learned bagging, a technique in which we draw
many bootstrap-sampled data sets from the original training data,
train on each sampled data set individually, and then aggregate
predictions at the end. We applied bagging to classification trees

There were two strategies for aggregate the predictions: taking the
class with the majority vote (the consensus strategy), and
averaging the estimated class probabilities and then voting (the
probability strategy). The former does not give good estimated
class probabilities; the latter does and can sometimes even improve
prediction accuracy

Bagging works if the base classifier is not bad (in terms of its
prediction error) to begin with. Bagging bad classifiers can degrade
their performance even further. Bagging still can’t represent some
basic decision rules

22



Next time: boosting

Boosting is a powerful tool. In fact, Leo Breiman (the inventor of
bagging!) once called it the “greatest off-the-shelf classifier in the
world”

23


