
Boosting

Ryan Tibshirani
Data Mining: 36-462/36-662

April 25 2013

Optional reading: ISL 8.2, ESL 10.1–10.4, 10.7, 10.13

1

Reminder: classification trees

Suppose that we are given training data (xi, yi), i = 1, . . . n, with
yi ∈ {1, . . .K} the class label and xi ∈ Rp the associated features

Recall that the CART algorithm to fit a classification tree starts by
considering splitting on variable j and split point s, and defines the
regions

R1 = {X ∈ Rp : Xj ≤ s}, R2 = {X ∈ Rp : Xj > s}

Within each region the proportion of points of class k is

p̂k(Rm) =
1

nm

∑
xi∈Rm

1{yi = k}

with nm the number of points in Rm. The most common class is

cm = argmax
k=1,...K

p̂k(Rm)

2

The feature and split point j, s are chosen greedily by minimizing
the misclassification error

argmin
j,s

([
1− p̂c1(R1)

]
+
[
1− p̂c2(R2)

])
This strategy is repeated within each of the newly formed regions

3

Classification trees with observation weights

Now suppose that we are are additionally given observation weights
wi, i = 1, . . . n. Each wi ≥ 0, and a higher value means that we
place a higher importance in correctly classifying this observation

The CART algorithm can be easily adapted to use the weights. All
that changes is that our sums become weighted sums. I.e., we now
use the weighted proportion of points of class k in region Rm:

p̂k(Rm) =

∑
xi∈Rm

wi1{yi = k}∑
xi∈Rm

wi

As before, we let
cm = argmax

k=1,...K
p̂k(Rm)

and hence 1− p̂cm(Rm) is the weighted misclassification error

4

Boosting

Boosting1 is similar to bagging in that we combine the results of
several classification trees. However, boosting does something
fundamentally different, and can work a lot better

As usual, we start with training data (xi, yi), i = 1, . . . n. We’ll
assume that yi ∈ {−1, 1} and xi ∈ Rp. Hence we suppose that a
classification tree (fit, e.g., to the training data) will return a
prediction of the form f̂ tree(x) ∈ {−1, 1} for an input x ∈ Rp

In boosting we combine a weighted sum of B different tree
classifiers,

f̂boost(x) = sign

(B∑
b=1

αb f̂
tree,b(x)

)
1Freund and Schapire (1995), “A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting”. Similar ideas were around
earlier

5

One of the key differences between boosting and bagging is how
the individual classifiers f̂ tree,b are fit. Unlike in bagging, in
boosting we fit the tree to the entire training set, but adaptively
weight the observations to encourage better predictions for points
that were previously misclassified

(From ESL page 338)

6

The basic boosting algorithm (AdaBoost)

Given training data (xi, yi), i = 1, . . . n, the basic boosting method
is called AdaBoost, and can be described as:

I Initialize the weights by wi = 1/n for each i
I For b = 1, . . . B:

1. Fit a classification tree f̂ tree,b to the training data with
weights w1, . . . wn

2. Compute the weighted misclassification error

eb =

∑n
i=1wi1{yi 6= f̂ tree,b(xi)}∑n

i=1wi

3. Let αb = log{(1− eb)/eb}
4. Update the weights as

wi ← wi · exp(αb1{yi 6= f̂ tree,b(xi)})
for each i

I Return f̂boost(x) = sign
(∑B

b=1 αb f̂
tree,b(x)

)
7

Example: boosting stumps

Example (from ESL page 339): here n = 1000 points were drawn
from the model

Yi =

{
1 if

∑10
j=1X

2
ij > χ2

10(0.5)

−1 otherwise
, for i = 1, . . . n

where each Xij ∼ N(0, 1) independently, j = 1, . . . 10

A stump classifier was computed: this is just a classification tree
with one split (two leaves). This has a bad misclassification rate
on independent test data, of about 45.8%. (Why is this not
surprising?)

On the other hand, boosting stumps achieves an excellent error
rate of about 5.8% after B = 400 iterations. This is much better
than, e.g., a single large tree (error rate 24.7%)

8

9

Why does boosting work?
The intution beyond boosting is simple: we weight misclassified
observations in such a way that they get properly classified in
future iterations. But there are many ways to do this—why does
the particular weighting seem to work so well?

One nice discovery was the connection between boosting and
forward stepwise modeling.2 To understand this connection, it
helps to recall forward stepwise linear regression. Given a
continuous response y ∈ Rn and predictors X1, . . . Xp ∈ Rn, we:

I Choose the predictor Xj giving the smallest squared error loss∑n
i=1(yi − β̂jXij)

2 (β̂j is obtained by regressing y on Xj)

I Choose the predictor Xk giving the smallest additional loss∑n
i=1(ri − β̂kXik)

2 (β̂k is obtained by regressing r on Xk),

where r is the residual r = y − β̂jXj

I Repeat the last step
2Friedman et al. (2000), “Additive Logistic Regression: A Statistical View of

Boosting”
10

Boosting fits an additive model
In the classification setting, yi is not continuous but discrete,
taking values in {−1, 1}. Therefore squared error loss is not
appropriate. Instead we use exponential loss:

L(yi, f(xi)) = exp(−yif(xi))

Furthermore, boosting doesn’t model f(xi) as a linear function of
the variables xi1, . . . xip, but rather as a linear function of trees
T1(xi), . . . TM (xi) of a certain size. (Note that the number M of
trees of a given size is finite.) Hence the analogous forward
stepwise modeling is as follows:

I Choose the tree Tj and coefficient βj giving the smallest
exponential loss

∑n
i=1 exp(−yiβjTj(xi))

I Choose the tree Tk and coefficient βk giving the smallest
additional loss

∑n
i=1 exp(−yi{βjTj(xi) + βkTk(xi)}) =∑n

i=1 exp(−yiβjTj(xi)) · exp(−yiβkTk(xi))
I Repeat the last step

11

This forward stepwise procedure can be tied concretely to the
AdaBoost algorithm that we just learned (see ESL 10.4 for details)

This connection brought boosting from an unfamiliar algorithm to
a more-or-less familiar statistical concept. Consequently, there
were many suggested ways to extend boosting:

I Other losses: exponential loss is not really used anywhere else.
It leads to a computationally efficient boosting algorithm
(AdaBoost), but binomial deviance and SVM loss are two
alternatives that can work better. (Algorithms for boosting
are now called gradient boosting)

I Shrinkage: instead of adding one tree at a time (thinking in
the forward stepwise perspective), why don’t we add a small
multiple of a tree? This is called shrinkage a form of
regularization for the model building process. This can also be
very helpful in terms of prediction accuracy

12

Choosing the size of the trees

How big should the trees be used in the boosting procedure?

Remember that in bagging we grew large trees, and then either
stopped (no pruning) or pruned back using the original training
data as a validation set. In boosting, actually, the best methods if
to grow small trees with no pruning

In ESL 10.11, it is argued that
right size actually depends on the
level of the iteractions between
the predictor variables. Gener-
ally trees with 2–8 leaves work
well; rarely more than 10 leaves
are needed

13

Disadvantages

As with bagging, a major downside is that we lose the simple
interpretability of classification trees. The final classifier is a
weighted sum of trees, which cannot necessarily be represented by
a single tree.

Computation is also somewhat more difficult. However, with
AdaBoost, the computation is straightforward (moreso than
gradient boosting). Further, because we are growing small trees,
each step can be done relatively quickly (compared to say, bagging)

To deal with the first downside, a measure of variable importance
has been developed for boosting (and it can be applied to bagging,
also)

14

Variable importance for trees

For a single decision tree f̂ tree, we define the squared importance
for variable j as

Imp2j (f̂
tree) =

m∑
k=1

d̂k · 1{split at node k is on variable j}

where m is the number of internal nodes (non-leaves), and d̂k is
the improvement in training misclassification error from making the
kth split

15

Variable importance for boosting

For boosting, we define the squared importance for a variable j by
simplying averaging the squared importance over all of the fitted
trees:

Imp2j (f̂
boost) =

1

B

B∑
b=1

Imp2j (f̂
tree,b)

(To get the importance, we just take the squared root.) We also
usually set the largest importance to 100, and scale all of the other
variable importances accordingly, which are then called relative
importances

This averaging stabilizes the variable importances, which means
that they tend to be much more accurate for boosting than they
do for any single tree

16

Example: spam data

Example from ESL 10.8: recall the spam data set, with n = 4601
emails (1813 spam emails), and given p = 58 attributes on each
email

A classification tree, grown by CART and pruned to 15 leaves, had
a classification error of 8.7% on an independent test set. Gradient
boosting with stumps (only two leaves per tree) achieved an error
rate of 4.7% on an independent test set. This is nearly an
improvement by a factor of 2! (It also outperforms additive logistic
regression and MARS)

So what does the boosting classifier look like? This question is
hard to answer, because it’s not a tree, but we can look at the
relative variable importances

17

18

Bagging and boosting in R

The package adabag implements both bagging and boosting
(AdaBoost) for trees, via the functions bagging and boosting

The package ipred also performs bagging with the bagging

function.

The package gbm implements both AdaBoost and gradient
boosting; see the function gbm and its distribution option

The package mboost is an alternative for boosting, that is quite
flexible; see the function blackboost for boosting trees, and the
function mboost for boosting arbitrary base learners

19

Recap: boosting

In this lecture we learned boosting in the context of classification
via decision trees. The basic concept is to repeatedly fit
classification trees to weighted versions of the training data. In
each iteration we update the weights in order to better classify
previously misclassified observations. The final classifier is a
weighted sum of the decisions made by the trees

Boosting shares a close connection to forward stepwise model
building. In a precise way, it can be viewed as forward stepwise
model building where the base learners are trees, and the loss is
exponential. Using other losses can improve performance, as can
employing shrinkage. Boosting is a very general, powerful tool

Although the final classifier is not as simple as a tree itself, relative
variable importances can be computed by looking at how many
times a given variable contributes to a split, across all trees

20

Next time: final projects!

The final project has you perform crime mining (data mining on a
crime data set)

21

