
Data Mining Recitation Notes

Week 3

Jack Rae

January 28, 2013

1 Information Retrieval

Given a set of documents, pull the (k) most similar document(s) to a given
query.

1.1 Setup

Say we have D documents that we wish to select from. We represent each text document
(eg. a web page) as a vector,

xi ∈ Nm, i = 1, 2, . . . , D (1)

where the components of this vector xij represent the number of occurrences of word j in
document i, for j = 1, 2, . . . ,W .

Thus our full corpus of documents can be represented by the matrix,

1ND×W 3 X =


x1

x2
...

xD

 =


x11 x12 · · · x1W
x21 x22 · · · x2W

...
...

. . .
...

xD1 xD2 · · · xDW

 (2)

and our query text can be represented by its word counts in the vector,

NW 3 y = (y1, y2, . . . , yW) .

Note: Representing text solely by word counts/frequencies is known as a ‘bag
of words’ representation. It’s simplistic because it disregards the order in which words

1The 3 sign is just ∈ reversed, it contains exactly the same meaning (X is an element of the set ND×W)

1

appear. We model a document as being generated from picking words out of a bag, this is
never how a document is created (I hope). Nevertheless it is easy to use and often works
well in practice.

1.2 Solution

We wish to find the document that is ‘closest’ to our query document.

Q1: What about the document that minimizes ||y − xi||2 over i = 1, 2, . . . , D?
This is the main idea. We look at the distance between the two vectors, using some vector
distance metric like L2 or L1. But one problem occurs: the document length affects
which document is chosen. If the query is short, a long document will never be chosen even
if it is highly appropriate. Consider the following example:

Figure 1: Three documents and a query: ”Hi Jack”, mapped into N2

Hi

Jack

Hi Jack
Hi Jack

Hi Jack1

1

1.4

Hi

Jack

Document Vector Euclidean Distance to Query
Queryt Hi Jack (1,1) 0
Document 1 Hi (1,0) 1
Document 2 Jack (0,1) 1

Document 3 Hi Jack Hi Jack (2,2)
√

2

2

With no normalization, document 3 is the ‘furthest away’ despite being intuitively the best
match. Why? Because it’s longer. That’s not what we want...

Q2: Ok, so normalize by document length? That solves the problem of document
length affecting our likeness measure. Letting

x∗ij =
xij
||xi||1

translates our word count vector to a word frequency vector. We don’t have to normal-
ize by the length of the document, we could also normalize by the L2 norm, or any norm of
your choosing - as long as it’s consistent with the distance metric (i.e. they match).

(Optional - Cosine Similarity): Instead of minimizing the distance between
points, why don’t we minimize the angle between a document and a query? This
technique is often referred to as cosine similarity and it is frequently used in
scenarios involving the ‘similarity’ between vectors, like ours.

If you inspect the first example, Figure 1, you’ll see the angle between the query
and the desired document (“Hi Jack Hi Jack”) is 0 whereas it is π/4 for the
two less desirable documents (“Hi” & “Jack”). Interestingly, minimizing the
angle between two vectors is the same as minimizing the distance of normalized
vectors.

Proof Lets assume we are interested in a particular distance metric, say L2

(Euclidean distance). We assume the vectors are normalized.2

arg min
x1,x2,...,xn

angle(xi,y) = arg max
x1,x2,...,xn

Cos(angle(xi, y))

= arg max
x1,x2,...,xn

xi · y
||xi|| × ||y||

= arg max
x1,x2,...,xn

xi · y (Normalized)

= arg min
x1,x2,...,xn

2− xi · y

= arg min
x1,x2,...,xn

||xi||2 + ||y||2 − xi · y

= arg min
x1,x2,...,xn

||xi − y||2

= arg min
x1,x2,...,xn

||xi − y|| � (By monotnicity)

Q3: Are all words of equal interest? When we are trying to retrieve
the appropriate document, we aren’t really interested in all of the words in

2Argmax? If x∗ = argmax f(·) then x∗ maximizes f(·)

3

the query and all of the words in the document - in reality just a few words
characterize the content of a query, and the content of a document.

Which words are useful? That is a really hard problem. A simple approach
we can take, is to note that frequent words are usually less informative. This
motivates Inverse Document Frequency: weight each frequency entry xij
by

log

(
D

nj

)
where

nj =
D∑
k=1

1{word j is in document k}

Q4: So to conclude? Create your word count matrix X and then let X∗ be
defined by

x∗ij =
xij
||xi||

· log

(
D

nj

)
and choose the document which minimizes

||x∗i − y||

where you can choose whatever distant metric, as long as it’s consistent. Also
consider stemming words to increase the reliability of the process, and if there
is user feedback - use Rocchio’s Algorithm.

1.3 Example: Recommendation Systems

Consider the CEO of Amazon walks up to you (in 2003) and says, “I would
like to make billions of dollars by recommending my customers products at the
checkout. Can you help?”

We can use the same tools from information retrieval. Say we have D previous
checkout shopping carts, and W unique products, each shopping cart has a
‘purchase vector’ xi where xij equals the number of times cart j has purchased
product i. Given a sample shopping cart, y, we can locate the (k) most similar
shopping carts, and then suggest items from these carts that the customer has
not picked up.

This is called collaborative filtering, here I describe a shopping cart based
collaborative filtering, but you could base it around customers’ full purchase his-
tory (customer based collaborative filtering) or the products themselves (item-
by-item collaborative filtering). Amazon invented item-by-item collaborative

4

filtering in 2003 [2], these days about 40% of their sales are made from their
recommendation system - so it clearly worked!

2 Pagerank

Larry Page & Sergey Brin had an original idea in the late 90s whilst studying
their PhD at Stanford, integrate query relevance with web page importance
when designing a search engine [1]. Namely, determine the importance of a web
page by the structure of the internet, represented as a graph. This motivates
the Pagerank algorithm, arguably one of the most lucrative algorithms ever
created.

2.1 The Model

If we knew the exact number of hits every web page gets, then we could use this
to determine web page importance. But this is private information that people
will not want to honestly report - so Google’s 20th century strategy consists
of examining hyperlinks.3 If a page is linked to by lots of other web pages,
it is probably important. If a page is linked to by important web pages, it is
probably important.

The key elements of the model,

• A directed graph is created from the internet. Vertices are web pages, a
directed edge from i→ j indicates i contains a hyperlink to j.

• We model a ‘random surfer’ who clicks on a random link on each page and
surfs the web in this manner. With probability 1− d the random surfer is
picked up and dropped on a (uniformly) randomly chosen web page. This
allows the random surfer to access all web pages with non-zero probability,
even if the graph is not strongly connected.

• Assuming the internet does not form a bipartite graph, and assuming
there are no sinks (web pages that have no outgoing links), the probability
distribution of the position of the random surfer converges to a stationary
distribution.

• This stationary distribution is our pagerank - a high probability (page
rank) implies the random surfer would visit that particular website fre-
quently.

3One might argue their 21st century strategy consists of knowing everything that happens on the internet.

5

Figure 2: Directed graph, the center node is frequently linked to.

The mathematics:

• n is the number of websites on the internet.

• {0, 1}n×n 3 L is our graph adjacency matrix, Lji = 1{ i links to j }.

• mi is the number of links on page i, i.e. the out-degree of the vertex.

• Rn×n 3 P is the probability transition matrix of our random surfer,

Pji =
1− d
n

+ d · Lji
mi

(3)

is the probability of the random surfer moving from website i → j. The
columns of P sum to one.

• The vector of pageranks, µ is the stationary distribution of the random
surfer. Namely Pµ = µ, so it is an eigenvector of P with eigenvalue 1.

We can find µ either by computing the eigenvector decomposition of P, which
requires O(n3) time. Alternatively we can approximate it in O(n2) using the
power iteration method:

6

1. Let µ0 = (1/n, 1/n, . . . , 1/n).

2. Let µi = P ·µi−1

||P ·µi−1|| i = 1, 2, . . . (i.e. iteratively multiply P by µi and
normalize.

Incorporation of Pagerank Once we have our pagerank scores, we can incor-
porate them into our search by using them as weights in our vector similarity
function, we can filter only important website that match a query, or we could
sort our search results by importance.

(Optional - Power Iteration) You may wonder why the power it-
eration method works. The algorithm is a general method for finding
the single eigenvector that corresponds to the largest eigenvalue - if it
exists. By only computing this one eigenvector, we save a lot of com-
putational effort. How do we know that µ corresponds to the largest
eigenvector? This is obtained from the Perron-Frobenius theorem, a
fundamental result in graph theory. The argument is as follows:

1. P is a positive matrix (i.e. all elements are positive), so the
theorem is applicable.

2. As all the columns sum to one, we see there is a trivial left
eigenvector corresponding to the eigenvalue of 1, the all-one row
vector: 1 = (1, 1, . . . , 1). Specifically 1 ·P = 1.

3. Thus, from the PF theorem, 1 is the largest left and right eigen-
value (it is called the Perron root). Why? Because the theorem
states only one root is positive, and this is the Perron root.

4. Recall our pagerank vector µ is a (right) eigenvector correspond-
ing to eigenvalue 1, this is the largest eigenvalue from the PF
theorem and thus the power iteration method converges to µ.

(Optional - Convergence Rate) As stated in lectures, the num-
ber of iterations required for the power iteration method to converge
within ε is dependent on two things: 1) How far µ0 is from µ and
2) The size of λ2, the second largest eigenvalue. The convergence is
geometric with rate 1/|λ2|.

7

References

[1] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual web search engine. Comput. Netw. ISDN Syst., 30(1-
7):107–117, April 1998.

[2] G. Linden, B. Smith, and J. York. Amazon.com recommenda-
tions: item-to-item collaborative filtering. Internet Computing,
IEEE, 7(1):76 – 80, jan/feb 2003.

8

