36-462 Data Mining Recitation Notes

Week 4

Li Liu

Department of Statistics Carnegie Mellon University

(Feb 4, 2013)

Abstract

In this recitation we will review K-means, K-medoids and hierarchial clustering. I will also give a brief introduction of model based clustering.

1 Clustering

1.1 What is clustering?

- (a) Clustering: dividing data subjects into clusters so that data subjects are similar with each other in the same cluster, and dissimilar to the subjects in different clusters.
- (b) Unlike classification, clustering is unsupervised learning. We have no training data.

1.2 Why clustering

- (a) As a tool to summary or discover
- (b) As a preprocessing for other algorithms

1.3 Major clustering approaches

- (a) Centroid based clustering
- (b) Hierarchical clustering
- (c) Model based clustering
- (d) Others:spectral clustering, density based clustering,....

2 Centroid based clustering

2.1 Key idea

The idea of K-means or K-medoids is to minimize within-cluster scatter (dissimilarity). The

definition of within-cluster scatter is:

$$W = \frac{1}{2} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{C(i)=k, C(j)=k} d_{ij},$$
(1)

where K is the number of clusters, d_{ij} is the dissimilarities between subjects i and j. C(i) = kmeans subject i is assigned to cluster k. n_k is the number of points in the group k.

2.2 K-means algorithm

Observations are $X_1, ..., X_n$. If we use Euclidean distance $||X_i - X_j||_2^2$ as the dissimilarity measure, then K-means can be implemented as:

- (a) Give initial values for cluster centers $c_1, ... c_K$.
- (b) For each *i*, find the cluster center c_k closet to X_i , and let C(i) = k.
- (c) For each k, let $c_k = \bar{X}_k$.
- 2.3 K-medoids and K-medians approaches
 - (a) K-medoids approach chooses data points as centers.
 - (b) K-medians approach chooses the medians as centers. This has the effect of minimizing distance over all clusters with respect to the L_1 distance metric.
 - (c) K-medoids and K-medians are more robust to noise and outliers as compared to K-means.
- 2.4 How to choose K
 - (a) CH index

CH(K) =
$$\frac{B(K)/(K-1)}{W(K)/(n-K)}$$
, (2)
where $B(K) = \sum_{k=1}^{K} n_k ||\bar{X}_k - \bar{X}||_2^2$,
 $W(K) = \sum_{k=1}^{K} \sum_{C(i)=k} ||X_i - \bar{X}_k||_2^2$.

(b) Gap statistics

$$\operatorname{Gap}(K) = \log W(K) - \log W_{\operatorname{unif}}(K), \qquad (3)$$

where $W_{\text{unif}}(K)$ is the within-cluster variation we'd see if we had points distributed uniformly.

3 Hierarchical clustering:

- 3.1 Important concepts
 - (a) Dendogram: A tree where each node represents a group, each leaf node is a singleton and each internal node has two children nodes.
 - (b) Linkages: The way to measure the dissimilarity between two groups.
- 3.2 Two types of hierarchical clustering
 - (a) Agglomerative (bottom-up): start with all points in their own group
 - (b) Divisive (top down): start with all points in one cluster
- 3.3 Different types of linkages
 - (a) Single linkage: the dissimilarity between groups G and H is the smallest dissimilarity between two points in opposite groups.
 - (b) Complete linkage: the dissimilarity between groups G and H is the largest dissimilarity between two points in opposite groups.
 - (c) Average linkage: the dissimilarity between groups G and H is the average dissimilarity between two points in opposite groups.
 - (d) Centroid linkage: the dissimilarity between the group averages.
 - (e) Minimax linkage: the smallest radius of all points in groups G and H. The radius of one point is defined as the distance between this point and the furthest point in the opposite group.

4 (Optional) Model based clustering:

- 4.1 Basic idea: clustering as probability estimation. It's a soft clustering. K-means and hierarchical clustering are nonparametric approaches and model based clustering is parametric approach.
- 4.2 Mixture of normal distribution

$$X \sim \sum_{k=1}^{K} \pi_k N(\mu_k, \Sigma_k), \tag{4}$$

- (a) π_k is the probability that an object belongs to cluster k, given no observation information.
- (b) μ_k are the cluster center, and Σ_k are the variance.
- (c) need to estimate the membership of each subject, π_k , μ_k and Σ_k (can be assumed as diagonal matrix and same for all clusters, or even as given.).
- 4.3 EM (Expectation-Maximization) algorithm

 $K\mbox{-means}$ is a case of EM algorithm.

- (a) Give initial value to μ_k , π_k and Σ_k .
- (b) E-step: For all subjects and all clusters, estimate the membership value y_{ik} , which is defined as the probability of subject *i* belongs to cluster *k*.

$$y_{ik} = \frac{\pi_k p(X_i; \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_k p(X_i; \mu_j, \Sigma_j)}$$
(5)

(c) M-step: Estimate μ_k , π_k and Σ_k based on X_i and y_{ik} .

$$\pi_{k} = \frac{1}{N} \sum_{i=1}^{N} y_{ik}$$

$$\mu_{k} = \frac{\sum_{i=1}^{N} y_{ik} X_{i}}{\sum_{i=1}^{N} y_{ik}}$$

$$\Sigma_{k} = \frac{\sum_{i=1}^{N} y_{ik} [X_{i} - \mu_{k}] [X_{i} - \mu_{k}]^{T}}{\sum_{i=1}^{N} y_{ik}}$$
(6)

(d) repeat E & M steps until convergence.