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1 Summary

1.1 Introduction

In the center of statistical analysis, one of the main tasks of a statistician is usually to find
relationships between random quantities, i.e. to find dependence. For instance, discovering
a linear relationship between two random variables X, Y defined by Y = g+ 51X + ¢, €
random error, could help to “predict Y by observing X”. The Pearson’s product moment
correlation coefficient (PC) tells us how good the relationship between two random variables
can be approximated by a linear function (see Figure 1 (A)). Similarly the Spearman’s
rank correlation coefficient (SC) is used to detect the presence of a monotonic relationship
between two random variables (see Figure 1 (B)). Thus, extreme values of PC or SC (=
—1,1) highlight the presence of strong linear or at least monotonic relationships.
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Figure 1: Examples of dependence between two random variables. A: linear relationship. B:
monotonic relationship. C: U-shaped relationship. D: clustering relationship. The straight
lines are the simple linear regression estimates.

Yet, consider Figure 1 (C)-(D). We can clearly see that X,Y are not independent, even
if there is not any linear or monotonic relationship. In particular in Figure 1 (C) both the
PC and SC are approximately zero. This is in fact an example where PC =0 X 1 Y
(independence), while it is always true that X 1 Y = PC = 0. Therefore, it seems clear
that it is not correct in general to test independence of two random variables X, Y by testing
PC =0 or SC = 0. Furthermore, in the case when X,Y are vectors of possibly different



dimensions, one would need to test for independence on all possible pairwise correlations,
which can be infeasible. A solution could be to study the joint distribution of X,Y, or
some transformations of it. In particular, by definition X 1 Y if and only if Fxy = FxFy,
where Fxy denotes the joint cumulative distribution function of vector (X,Y"), and Fy, Fy
are the marginal cdf’s of X, Y, respectively. Alternatively, we also have that X L Y if and
only if Fxy = FxFy, where Fxy denotes the joint characteristic function of vector (X,Y)
and Fx, Fy are the marginal cf’s of X, Y, respectively. Therefore, it seems to be intuitive
that some distances d(Fxy, FxFy) or d(Fxy, FxFy) could be much more appropriate to
detect any kind of relationship between two random quantities X,Y. In Renyi (1959) we
find the definition of Maximal Correlation

mCor = max Cor(f(X),g(Y)), s.t.Var(f(X)), Var(g(Y)) >0 (1)

f.9

where Cor denotes the Pearson correlation, and the maximum is taken over all the possible
functions f,g. We have that mCor = 0 if and only if X 1 Y. An interesting result is
given when we choose f,g € A = {hy : R — C : hy(w) = €™t € R}. We have in
fact that Cov(e™X,eY) = E[e!X+Y)] — E[e#X|E[e™Y] = Fxy(s,t) — Fx(s)Fy(t), such
that maxy 4e4 Corr(f(X),9(Y)) = 0 if and only if X L Y, suggesting that focusing on
characteristic functions is a reasonable choice.

In the past 60 years, we can find some attempts of addressing the idea of testing inde-
pendence of two random variable X,Y based on estimates of the distribution functions or
characteristic functions. In Hoeffding (1948), and Blum, Kiefer & Rosenblatt (1961), we
can find tests of independence based on the following distance of the empirical cdf’s:

m://mmw—&MQ@wﬁww (2)

and in Rosenblatt (1975) a test of independence was based on the distance between kernel
density:

m://mummwww@%ummw 3)

where a(,) is a weight function. We have that R,, is Ho-distribution free, while B,, is not.
Moreover, tests based on B,, resulted to be less powerful than that based on R,,.

An important contribution was given in Feuerverger (1993). The author proposed a test
based on the following distance between empirical characteristic functions:
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and nT, B > )\jZJZ, where Z;’s are iid N(0,1), but estimating A;’s resulted to be not so
easy, such that approximations via simulations were preferable.

However, all these tests were limited to the bi-variate case, i.e. X € RjY € R. An
important contribution was recently given by Székely, Rizzo and Bakirov (2007). They
proposed a quantity called distance covariance, which measures the degree of any kind of
relationship between two vectors X € RP,'Y € R? of arbitrary dimensions p, q. Moreover in
Székely-Rizzo (2009), the authors showed that an equivalence existed between a particular



reasonable definition of distance covariance and the Brownian covariance of two random
vectors of arbitrary dimensions.

In the rest of this paper we present the content of Székely and Rizzo (2009) and some
simulations. We start by defining some notation. Then we define the distance covariance
and distance correlation, their relationship with the Brownian covariance, some proper-
ties of distance covariance and hypothesis testing. Finally we present the results of some
simulations and discussions.

1.2 Notation

e X | Y means “X,Y are independent”

||| is the Ly norm of vector x € R?

(x,y) is the inner product of vectors x,y € R?

Fyw (w) is the cumulative distribution function (cdf) of random vector W € R?

Fw(t) =E [ei<t’w>] = Jpa et W) d Py (w) is the characteristic function (cf) of ran-
dom vector W € R%, where t, W € R% and i = /—1

Cov(X,Y) =E[(X —E[X])(Y —E[Y])] and Var(X) = Cov(X, X)

Corr(X,Y) = — CovXY) _ j e the Pearson’s correlation coefficient
Var(X)Var(Y)

1.3 Distance Covariance

In this section, we define and discuss the distance covariance dependency measure.

We would like to see if there are any dependencies between X and Y. We have that
X 1LY if and only if fxy = fx fy, where fy, fx, fx are the the probability density func-
tions of (X,Y), X, Y, respectively. This motivates trying to find the distance between fxy
and fx fx. We might do this with a norm: ||fxy — fx fy||. This norm is a dependency
measure for X and Y. X and Y are independent if and only if || fxy — fx fy || = 0.

Unfortunately, the probability density functions (pdfs) do not always have nice proper-
ties for the distance covariance. A pdf does not always exist, and it may not be uniformly
continuous on the entire support. This motivates the use of characteristic functions. A
characteristic function of a column vector of p random variables X has the following form:

Fx(t)=E [ei<t’x>] :/ €i<t’x>fX(X)dx
RP

where i = /—1. This is the inverse Fourier transform of pdf fx, and is guaranteed to
exist (the integral is a bounded continuous function over a space whose measure is finite).
Also, Fx(t) is uniformly continuous on the entire support of X. Finally, the most important
property is that the characteristic function shares the independence property of the pdf,



namely Fxy = FxFy if and only if X L Y. Thus, the characteristic function is a suitable
replacement for the pdf when considering the distance between two pdfs.

Let X € R? and Y € RY, where p does not necessarily need to be equal to q. Our new
desired norm is the following:
”-FXY — fxfy”, where ”}—XY — fx./_"y” =0—=X_1Y.

With this definition, the distance covariance, V(X,Y) is defined as follows:
V2(X,Y;w) = || Fxy(t,s) — Fx(t)Fy(s)||2, where w denotes a specific weight function.
VEX,Y;w) = [ |Fxy(t,s) — Fx(t)Fy(s)>w(t, s)dtds

Rp+a
We evoke a weight function w(t, s) to enforce desired properties that results in the distance

covariance measure. Different choices of w(t,s) will lead to different types of covariances:
Not every w(t, s) leads to a dependence measure. Why would we evoke a weight function at
all? One reason is that we will be taking the difference of empirical characteristic functions,
which may have large noise in the higher frequencies that could negatively affect our estimate
of the norm. A weight function w that gives large weights to small norms of ¢ and s
favor comparing the characteristic functions at lower frequencies (¢ and s correspond to
frequencies in the Fourier domain).

We can also define a standardized version of the distance covariance, termed the distance
correlation:
_ VX Y;w)

VYV w)V(Y;w)

R is an unsigned correlation dependent on w(t,s). To choose w(t,s), we identify two
desired properties of R,,:

1. R >0, Ry=0<=X1Y

2. Ry is scale invariant (i.e., scaling X and Y by € € R would not change R,,).

w

A first attempt at choosing w(t, s) was to consider integrable functions. However, this
resulted in the problem that R, could be arbitrarily close to zero, even if X and Y are
dependent. Since we would like to test if X and Y are independent by seeing how close
the distance correlation is to zero (i.e., the null distribution would have mass around zero),
having a test statistic that can be arbitrarily close to the null distribution even under
dependence is not desirable.

To address this issue, [6] used a non-integrable function:

1 14qy—1
w(t, s) = (CpColltll, ™ Isllg™) ()
where [[t[lm = /(3272 tj2) (i.e., the Euclidean norm for R™), t € RP and s € RY, and
Cq = s /T (%d) As mentioned above, this weight function will be small for high-
frequency components of the characteristic functions (¢ and s represent frequencies).



1.3.1 Definition of distance covariance

This particular weight function defines the distance covariance, dCov:

| Fxy(t,s) — Fx(t) Fy(s)?
VEX,Y) = a C / mIETRIE dtds

Note that V(X,Y)>0and V(X,Y)=0<= X LY.

1.3.2 Sample distance covariance

One natural place to estimate the distance covariance is to first estimate the empirical
characteristic functions (e.g., %) and compute the sample distance covariance:

Va(X,Y) = || Fry (t,5) = Fx(H)Fy (s)|?

Evaluating the integral of this norm with the chosen w(t, s) yields:

n n
1
VaX.Y) = Z Xk = Xlp | Vi = Yilg + 53 Xe = Xilp— > [Yi =Y,
k=1 k=1 kJl=1

1 n n
_2$Z Z (X = Xilp| Y — Yl (6)

k=1Ilm=1

This motivates how the distance covariance is a linear combination of expected values
of norms (as seen through the equivalency of the distance covariance to the Brownian
covariance, discussed in later sections):

VAX,Y) = BE[X - X'[[Y - Y| + E[[X - X'|E[]Y - Y|
—E[X - XY = Y"|] - E[[X - X"||[Y - Y'|]
Here, X, X’, X" are i.i.d (and similarly defined Y,Y’, Y").
Looking over the form of the sample distance covariance, we can define a simple pro-
cedure involving matrices and Euclidean distances between sample data points. Thus, the

sample distance covariance is interpretable and computationally efficient, making it a valu-
able tool in practical settings.

1.3.3 Procedure to compute the sample distance covariance

We first describe the procedure to compute the sample distance covariance, and we then
provide simple examples to intuit the measure.

Procedure to compute V,(X,Y):



1. Let (X,Y) = {X;,Y; : i = 1,...,n} represent the n paired i.i.d random vectors
X eRPand Y € R%

2. Compute the distance matrices a and b:

(art) = ([ Xk — Xillp) and (bgr) = (Y5 — Yillg)-

3. Compute the means of the rows (ag.), columns (a.;), and all elements for the distance
matrices (a..). These terms correspond to terms in Equation 6.
n n n _ _ —
ag. = % > ag, aq = % > akg, a. = % >~ ag. Compute by., by, and b.. in a similar
=1 k=1

k=1
manner.

4. Define the re-centered matrices, A and B:
A = ag — E_Lk —76‘1 —|—76_L..
By =by —bp. —b;+0..

5. Finally, the sample distance covariance is computed as follows:
n

Va(X,Y)=:5 > AuBu
ki1

To gain intuition for the distance covariance, we ran three simple simulations, including
a bi-variate non-linear case, a case of independence between two random vectors, and a case
of dependence between two random vectors (see Section 1.7.1). We include heat maps of
the various matrices in the procedure, and provide intuition for each step.

1.3.4 Summary of distance covariance

In this section, we provided a mathematical definition to the distance covariance. The
sample distance covariance can be computed in an efficient manner, which allows the use
of the random permutation test to test for significance (discussed in a later section). The
distance covariance also has nice properties, including detecting non-linear interactions be-
tween variables and an interpretable procedure to compute the sample distance covariance.
The distance covariance also extends the bi-variate case to test for dependencies between
random vectors of different dimensions. Thus, the measure tests for dependencies between
one variable in X and multiple variables in Y. Note that dependencies can exist between
variables in X but that X and Y can still be independent.

An application where the distance covariance could be used is in neuroscience. Currently,
experimenters implant a multi-electrode array into the brain and simultaneously record the
activity of a population of neurons in the cerebral cortex. Experiments in the near future
will implant two multi-electrode arrays in two different areas of the brain, and ask if neurons
in those two areas are communicating (i.e., do the areas interact?). One way to test for
interactions between the two areas is to treat the activity from one array as a vector X
with dimensionality equal to the number of neurons recorded from that array, and likewise
define Y for the other array. Then, we can use the distance covariance measure to test for
dependencies between the two populations (i.e., test if X and Y are independent).



1.4 Brownian Distance Covariance

We are going to give some definitions useful to introduce the notion of Brownian covariance
and finally state the main result of Székely and Rizzo (2009).

Definition 1. Let X € R? be a random vector and let {U(s) : s € RP} be a random field.
The U-centered version of X with respect to U is

Xy = U(X) — E[U(X)[U] (7)
where Xy € R.

Notice that Xy is random because both X and U are random. The stochastic transfor-
mation X +— X converts random vector X € RP into a random variable X;; € R. This is
a key step that enable us to study the dependence of two random vectors X, Y of arbitrary
dimensions by compressing them onto the same univariate space.

Definition 2. Let X € RP,Y € R? be two random wvectors, and let {U(s) : s € RP},
{V(t) : t € R} be two independent random fields. The covariance of X,Y with respect to
U,V is the positive number whose square 1is:

Coviyy (X, Y) = EXuXpYv Y] (8)
where (X,Y) and (X', Y') are independent copies.

We can see that the resulting dependence measure is determined by the choice of U, V.
We can see also that this definition generalize Pearson product moment covariance:

Remark 1. If p=q =1 and U,V are identity functions id(t) = t, then
COV2U,V(X7 Y) = (COV(X7 Y))2 (9)
since Xiqg = X — E[X], Yiq =Y — E[Y].

In order to detect any kind of relationships between X and Y (see Remark 2), and
also to get some tractable formulas, a natural choice of (U,V) is (W, W’), which are two
independent Wiener fields.

Definition 3. Wiener field. A Wiener random field on R? is a random field {W (s) : s €
R with the following properties:

1. trajectories are continuous a.s.
2. Cov(W(s), W(t)) = lIsll + [[£]l + [ls — 2|
3. increments are independent

Definition 4. Brownian covariance. Let {W(s) : s € RP}, {W'(t) : t € R?} be two
independent Wiener fields. The Brownian covariance of X, Y is the positive number whose
square 1s:

W2(X,Y) = Coviy (X, Y) (10)



Theorem 1. Let w(s,t) be the weight function defined in expression (5). Then

VX, Y;w) =W(X,Y) (11)
Proof. See proofs of Theorem 7 and Theorem 8 in [6]. O
Corollary 1. We have that W(X,Y) has all the properties of V(X,Y;w).

Remark 2. The Brownian covariance of two random vectors X € RP)Y € RY is obtained
by averaging over all the possible realizations of two independent Wiener fields and with
respect to the joint distribution of (X,Y). Since a Wiener field has the property of having
continuous trajectories a.s., we can see the Brownian covariance as an approximate average
over all the possible continuous functions f : RP — R, g : R? — R evaluated at random
points (X,Y). This intuition, combined with Theorem 1, can help to understand why tests
based on the distance covariance V(X,Y) can detect any kind of relationship between X and
Y. We can see also that averaging with respect to Wiener processes is much easier than
mazximizing with respect to all the possible functions, as it is instead required to compute the
mazximal correlation (Renyi 1951).

1.5 Properties of Distance Covariance

In this section, we briefly discuss some properties of the distance covariance. Proof of these
properties can be found in [6].

1. As seen in the distance covariance section (Section 1.3), there is an equivalent def-
inition for computing the sample distance covariance with empirical characteristic
functions and the Euclidean norm for distances. This equates the desired norm
(IFxy — FxFy|lw) with a computationally-efficient calculation using distance matri-
ces.

2. As desired from any sample measure, the sample distance covariance converges almost
surely to the distance covariance (i.e., V,, — V), and the sample distance correlation
converges almost surely to the distance correlation (i.e., R2 — R?).

3. The following properties hold for V(X,Y), V(X), and R(X,Y):

(a)
0<R(X,Y)<1land R =0 if and only if X and Y are independent.

(b) Let random vectors X = (X7, X2) and Y = (Y7,Y3). If X is independent of Y,
then
V(X1 + Y1, X2 +Y2) <V(X1, Xo) +V(Y,Y2)

Equality holds if X7, Xo, Y7, Y2 are mutually independent.

()
V(X) =0 = X = E[X] almost surely



(d)
V(a1 4+ b:C1X, a9 + b202Y) =/ (‘bleDV(X,Y)

for constant vectors a; € RP as € RY, scalars bi;,by € R, and orthonormal
matrices C; € RP, (), € RY.

(e) If X,Y € RP are independent, then V(X +Y) < V(X) + V(Y). Equality holds
if and only if one of the random vectors X or Y is constant.

4. The following properties hold for R,, and V,:

(a)
Vo(X,Y) >0

(b) Vn(X) = 0 if and only if every observed sample is identical.

(c)
0<RN(X,Y) <1

(d) Rp(X,Y) =1 implies that the linear subspaces spanned by X € R? and Y € RP
respectively are almost surely equal. If we assume subspace equality, then

Y = a=bXxXC

for some constant vector a € RP, nonzero real number b, and orthogonal matrix

C.

5. The following properties involve the test statistic nV2:

V2 D =
(a) If X L Y, then 7}—2" - Q, where Q = 121 /\ij2. Zj ~ N(0,1), {\;} are
nonnegative constants that depend on the distribution of (X,Y), and [Q] = 1.

(b) If X 1 Y, then nV? n%o @1, where Q1 is a nonnegative quadratic form of
centered Gaussian random variables and F[Q;] = E[|X — X'||E[[Y = Y'|].

2
(c) If X and Y are dependent, then ”%/" L,  and nV2 L .
2 n—oo n—00

6. The following properties address the case when (X,Y’) has a bi-variate normal distri-
bution, which is an assumption by the Pearson’s correlation p to test for independence.

R(X,Y) < |pl
R*(X,Y) = f(p) where f has a closed form.

X, Y XY
infR( . ):limL( YY)

== ~ 0.89
p#0 |pl =0 p|



1.6 Hypothesis Testing

We would like to test for independence between X € RP and Y € R?. Our null hypothesis
is that X and Y are independent (e.g., Hy : Fxy = FxJFy). While it turns out that a
test statistic can be found with a limiting distribution, this has weak properties. However,
because the distance covariance is computationally-efficient to compute, we recommend
using the random permutation test to test for independence. This is achieved by, for each
run, randomly permuting the samples in the set of data points for Y, ). This breaks
the dependencies between X and Y. We can then compute the shuffled sample distance
covariance V¥ for this permuted sample (i.e., under the null hypothesis), and repeat this
many times. Then, we estimate the distribution of permuted V}’s, and find the fraction
of how many are greater than the actual sample covariance distribution V,,. This yields a
p-value to test for independence.

For completeness, we include notes about the limiting distribution for the distance
covariance.

First, it can be shown that, if X and Y are independent, then

nVi(X,Y) nV? p
= = —

a.b. Ty n—oo

where

D o0
Q=Y N7
j=1

as defined in the previous section. Since ) has a defined distribution, we can test if
2
PQ> Xg,a(l)) < «), and the test statistic % has a limiting distribution. Thus, we can
reject independence if
nV2 )
T; Z Xl—a(l)
Note that x?__ (1) cannot be computed analytically, but “good” approximations exist.

However, this test has been shown to be conservative.
If X and Y are dependent,

nVﬁ P
Ty n—oo

Thus, the distance covariance test of independence is statistically consistent against all
types of dependence.
1.7 Simulations
1.7.1 Simulation 1: Examples of sample distance covariance

We provide intuition behind the distance covariance with three examples (a non-linear bi-
variate example, an example where the random vectors are independent, and an example

10



where the data are clustered).
Example 1: Bi-variate non-linear dependency

In this example, X € R and Y € R. The variables were sampled from the following
distributions:

X ~ Uniform([—10, 10])

Y| X=X?+e where € ~ N(0,25)

Thus, X and Y have a strong dependency (Fig. 2). However, notice that this parabolic
dependency is not captured by the Pearson’s correlation (Fig. 1C). Thus, we investigate
if the distance covariance can do a better job at identifying the non-linear dependency
between X and Y.

120

Figure 2: Non-linear relationship between two random variables. Each blue point represents
one sample observation, and the red line represents Y = X2,

First, we compute the distance matrices (a and b) for both sets of samples X and )
respectively, where we take all the pairwise distances between data points (Fig. 3). Note
that if two data points of X are close together (e.g., X; = —10 and X; = —9), their distance
is small (Fig. 3 left panel, a). However, for Y, the distance between two data points (e.g.,
Y; and Yj) is small if the distance between corresponding data points X; and X is small or
if X; ~ —X; (Fig. 3 right panel, b).

When the distance matrices are re-centered (Fig. 4, A and B correspond to the re-
centered distance matrices of X and Y, respectively), we see the distances that are the
most “outlying.” In particular, notice that the elements in the corners of both matrices
have the largest magnitudes. In this example, the corners represent the greatest outlying
data points (e.g., when X € {[—10,-9],[9,10]}) and correspond to the columns and rows
that have the greatest difference in distances.

Finally, we compute the element multiplication of both A and B (Fig. 5). Three prop-
erties of the structure emerge from this matrix. First, most of the elements in the center
of the matrix are small because in the range X € [—5,5], X and Y appear to have little

11



a distance matrix b distance matrix

- 20
18
16
14 _
a, X v by
10
8
6
4
2
10 0

Xvalue |ndex
- N _ b_ [

Figure 3: Distance matrices for the bi-variate non-linear dependency example. The distance
matrix a represents the distances between observed data points in X (left panel), and
likewise for b and ) (right panel). Each element is the Euclidean distance between two
observed points. The matrices are indexed by the sorted values of X. For b, Y will
have similar values when X = {—10, 10} (corners of b), and thus have small distances. The
surrounding bars correspond to the means of the rows (a;_ and bg_), means of the columns
(a_¢ and b_y), and the means of all elements in the matrix (a__ and b__). Note the scales
are different for a and b.

-10 6
4
-5 2
0
X -2
0
-4
-6
5 -8
=10
10 =12
-10 - 10

0
X value index X value index

Figure 4: Re-centered distance matrices, A and B, that were computed by a linear com-
bination of the distance matrices a and b and the means, respectively. The matrices are
indexed in the same manner as in Figure 3.

dependency. Second, the upper left and bottom right corners (i.e., on the main diagonal)
have large values because as the magnitude of X grows, one can find more dependency in Y
(i.e., the ends of the parabola have strong non-zero correlation). Third, the upper right and
bottom left corners (i.e., on the minor diagonal) have negative values because the distance

12



covariance measure expects when the distance of two data points in one data set (X; and
X) is small, then the distance of the corresponding Y; and Y; should also be small, but
this is not the case for this example. However, the magnitudes of the minor diagonal are
smaller than the magnitudes of the main diagonal. Thus, the correlation at the ends of the
parabola are stronger than the fact that in those regions the X’s are very far apart whereas
the Y’s are similar. The resulting distance covariance is V2(X,Y) = 22.22, significantly
larger than zero (p < 0.01, random permutation test).

1 *
L A *B
10 g I 1! 003
A_ 0.025
== ? 0.02
| =2
0015
X 0.01

5

.-::i:
10 liis = W00

-10 -5 0 5 10

2 X value index
V© =22.22

Figure 5: The normalized element-wise multiplication of A and B from Figure 4. The
(k, £)th element corresponds to n%Ak,zB k¢- The matrix is indexed in the same manner as in
Figure 3. The square of the sample distance covariance was V2(X,Y) ~ 22.22, significantly

different from zero (p < 0.01).
Example 2: Independent Gaussian random vectors

In the next example, we ask how well the sample distance covariance can assess truly
independent data. The variables were sampled from the following distributions:

X ~ N(0,1)
Y ~ N(0,1)

where X,Y € R2. Thus, X and Y have no dependency (Fig. 6). We test if X is independent
of Y.

As expected, the distance matrices (a and b) reveal small distances between data points
in X and Y, respectively (Fig. 7). There is no apparent structure in a or b.

Re-centering the distance matrices (A and B) still reveals no structure (Fig. 8).

Taking the element-wise multiplication of the two matrices A and B reveals a matrix
of elements with small magnitudes (Fig. 9). The resulting distance covariance VZ(X,Y) =
0.076 is not significantly far from zero (p = 0.82, random permutation test).

13
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X y
’ 5 2 5

. 0o e, %8 o

0 B 0 R
- e

55 0 5 10 15 55 0 5 10 15

X y1

Figure 6: Independent Gaussian random vectors X,Y € R? have no dependencies between
them, and were drawn from a standard multivariate normal.

a distance matrix b distance matrix

Q|

30

5 10 15 20 25 30 5 10 15 20 25 30
sample index sample index

Il I 0 - D

Figure 7: Distance matrices for the independent random vectors example. The distance
matrix a represents the distances between observed data points in X (left panel), and
likewise for b and Y (right panel). Each element is the Euclidean distance between two
observed points. The matrices are indexed in no particular order. The surrounding bars
correspond to the means of the rows (a;— and by_), means of the columns (a_; and b_y),
and the means of all elements in the matrix (a__ and b__).

Example 3: Clustered random vectors

Our final example involves clustered data (Fig. 10). Note that the clusters for X € R?
(Fig. 10, left panel) correspond (in color) to the clusters for Y € R? (Fig. 10, right panel).
Thus, there are dependencies between X and Y, but these dependencies cannot necessarily
be captured by Pearson’s correlation. We investigate if the distance covariance measure can
pick up on the dependencies between X and Y.

The distance matrices (Fig. 11, a and b) reveal structure between the clusters. In
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0.5 0.5
0 0
-05 =05
-1 -1
-1.5 -1.5
-2 -2
-25 -25
-3 -3
-35 -35
-4 -4
5 10 15 20 25 30
sample index sample index

Figure 8: Re-centered distance matrices, A and B, that were computed by a linear com-
bination of the distance matrices a and b and the means, respectively. The matrices are
indexed in the same manner as in Figure 7.
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Figure 9: The normalized element-wise multiplication of A and B from Figure 8. The
(k,£)th element corresponds to n%Ak,gBk’g. The matrix is indexed in the same manner
as in Figure 7. The square of the sample distance covariance was V2(X,Y’) ~ 0.076, not
significantly different from zero (p = 0.82).

particular, one can see in the top rows of the distance covariance matrix for X (a, Fig. 11,
left panel) that the data points in the red cluster are far from the data points in the green
cluster (the middle elements ai.10,11:20 are larger than those in a1;1071;10) and even further
from the data points in the blue cluster (the rightmost elements aj.1021:30 are larger than
those in a1;1071;20). The same structure is maintained for the distances of Y (b, Fig. 11,
right panel).

The re-centered matrices (A and B) maintain similar structure as the distance matrices
(Fig. 12), but put more emphasis on the outlying data points (data points in the red and
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Figure 10: Example with clustered data with dependencies between X,Y € R2. The data
of X were sampled from standard normals and then shifted to one of three means: {(0,5),
(5,5), (10,5)}. The data of Y was generated in the same manner except with different
means: {(5,0), (5,5), (5,10)}. The data of X and Y were ordered such that the data points
in the red cluster for X corresponded to the data points in the red cluster for Y. Thus,
dependencies existed between clusters of the same color.

a  distance matrix b distance matrix

Q|

5 10 15 20 25 30 5 10 15 20 25
sample index sample index

30

0

s ¢ IEEE R 5 mEE T S

Figure 11: Distance matrices for the independent random vectors example. The distance
matrix a represents the distances between observed data points in X (left panel), and
likewise for b and ) (right panel). Each element is the Euclidean distance between two
observed points. The matrices are indexed such that rows and columns 1 to 10 in a and b
correspond to observed data points in the red clusters, rows and columns 11 to 20 correspond
to the green clusters, and rows and columns 21 to 30 correspond to the blue clusters. The
surrounding bars correspond to the means of the rows (a;_ and by_), means of the columns
(a_s and b_y), and the means of all elements in the matrix (a__ and b__).

blue clusters, top left and bottom right corners of the matrices).
The resulting element-wise multiplication between A and B reveals strong dependencies
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Figure 12: Re-centered distance matrices, A and B, that were computed by a linear com-
bination of the distance matrices a and b and the means, respectively. The matrices are
indexed in the same manner as in Figure 11.

within clusters (Fig. 13, top left and bottom right corners) and strong dependencies between
outlying clusters (Fig. 13, top right and bottom left corners). This reveals the important
assumptions of the distance covariance: Two data points that have small distance in X
should have a small distance for the corresponding data points in ). Likewise, if X; is an
outlier in X, then the corresponding Y; should be an outlier in ). The sample distance
covariance for this example was V2(X,Y) = 8.44, significantly larger than zero (p < 0.01,
random permutation test).

1
L A *B
0.06
0.05
10 0.04
15 0.03
% 0.02
0.01
25
0
30
5 10 15 20 25 30
2 sample index
V =844

n

Figure 13: The normalized element-wise multiplication of A and B from Figure 12. The
(k, £)th element corresponds to n%Ak,ka,f- The matrix is indexed in the same manner as in
Figure 11. The square of the sample distance covariance was V2(X,Y) ~ 8.44, significantly
different from zero (p < 0.01).
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1.7.2 Simulation 2: Lack of monotonicity

Let fa(z) = sin(Az) and let X ~ Uniform (0,1). We have that for A € (0,1], function f
is monotone increasing in x, while for A > 1 it is not monotone any more (see Figure 14).
We can expect that, when trying to assess the strength of the relationship between random
variables (X,YWM), where YN = f,(X) + €,¢ ~ N(0,02) independent noise, a correlation
test based on Pearson product moment, Spearman’s rank coefficient or Kendall’s rank
coefficient, will not be so powerful for A\ ~ 2 4 4k, with k£ € N. In particular, for the case of
Pearson correlation, for those values of A, the best linear approximation of the relationship
between YV and X ~ Uniform(0,1) will be approximately an horizontal regression line
y = Bo + Pz, where f; = pxy% ~ 0, where pxy = 0 is the Pearson’s correlation
coefficient. Moreover, Spearman’s and Kendall’s rank coefficients will also be attenuated
because of lack of monotonicity. We instead expect that a distance covariance test should
be able to detect the presence of any possible kind of dependence (Szekely 2009), i.e. for
any A, a test Hp : X, Y independent based on the distance covariance should reject Hy more
easily.

fr(x) Absolute value of correlations
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Figure 14: Left: plot of fy(z) against =, for A = 1,2,3,4,6. We can see that for A = 1,
fa(x) is strictly increasing, while for A > 1 the function is not monotone any more. Right:

absolute value of Pearson, Spearman, Kendall and distance correlations of random variables
X, YW,

Correlation measures as functions of parameter A\

In this section we want to provide a preliminary intuition of how the different correlation
measures mentioned above are affected by the lack of monotonicity. In Figure 14 we plot
Pearson, Spearman, Kendall and distance correlations of random variables X, Y ) where
X ~ Uniform(0,1) and Y™ = £,(X) (so no additive noise). As introduced above, we
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can see that all the coefficients show their highest (absolute) values when f is monotone
(A € (0,1)), while for all the other cases (A > 1) all the coefficients are attenuated, but the
distance correlation does not vanish for values A &~ 2 + 4k, k € N, which is the case of all
the other correlation coefficients.

Power functions

We are going to estimate (by using R) the power and probability of TYPE I error of tests
based on Pearson product moment, Spearman’s rank coefficient, Kendall’s rank coefficient,
and distance covariance. In particular we plot the power of all the tests mentioned above,

as function of sample size and parameter \. We generate data X; b Uniform(0,1) and
Yio‘) = f(X;) + €, with ¢ d N(0,0.). In particular we choose o, = 0.5 and for a
pair (n,\) we estimate the probability of rejecting hypothesis “Hy : X,Y independent” as
follows:

1. Generate {(X;,Y;)}"
2. Test Hy based on data generated
3. Repeat 1-2 many times (e.g. 500) and compute the proportion of rejections.

In Figure 15 we can see that when testing independence when the random variables X, Y
are linked by a monotonic relationship (A = 1) then all the different tests are able to detect
dependence, showing an increasing power with respect to the sample size n. Yet, when the
relationship is not monotone, but concave (A = 2) then, as expected, tests based on Pearson
product moment, Spearman’s rank coefficient, and Kendall’s rank coefficient show a very
small power even constant with respect to the sample size, while the distance covariance test
shows an increasing power in the sample size. Moreover, we also compare the performances
of distance covariance tests based on permutation and asymptotic approximation (x3).
We can see that estimating the distribution of the distance covariance test statistic via
permutation leads to a well controlled probability of TYPE I error, while the asymptotic
approximation does not (at least for the sample sizes considered). This is why for the other
simulations we will only use the permutation approximation.

In Figure 16 we plot the power of the tests as function of A € (0,12) and fixed sample
size n = 50. We can see that the power of the distance covariance test, at least for A > 1, is
always larger than any other test that, as expected show very low power for A =~ 2 + 4k, k
integer.

1.7.3 Simulation 3: heteroskedasticity

Let Y = Zg(X), where g(X) is some function of X ~ Uniform(0, 1), and Z ~ N(0,1). We
have that E[Y|X = z] = 0,Vx, but Var(Y|X = x) = g(x)?. Therefore, for any nonconstant
function g(z), the distribution of Y| X is affected by X, i.e. X,Y are not independent. In
Figure 17 we consider the case g(z) = sin(3nz), and we compare the power of tests (by
using R) based on Pearson, Spearman, Kendall, and Distance covariance. We can see that
as the sample size increases, the power of the distance covariance test increases, while all
the other tests do not show any improvement. This example suggests that, when fitting a
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Power function: monotone relationship
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Figure 15: Power and probability of TYPE I error of the tests as functions of the sample size.
Top left: power of the tests when there is a monotone relationship between the two variables;
all the tests perform well. Top right: power of the tests when there is a nonmonotone (bell)
relationship between the two variables; only the distance covariance test shows increasing
power in detecting the nonmonotone dependence. Bottom: correspondent probabilities of
TYPE I error. We can see that the asymptotic distance covariance test shows a too large
probability of TYPE I error, while for all the others that probability is garanteed to be

smaller than the test level (5%).

regression curve, the analysis of the residuals (e.g. checking for heteroskedasticity) could
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be supported by a test of independence based on the distance covariance.
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Power functions: sig.eps=0.5, sample size=50, 5% level
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Figure 16: Power of the tests as function of A € (0,12) and fixed sample size n = 50. The
distance covariance test performs generally better than any other test.
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Figure 17: Y = Zg(X), where g(X) is some function of X ~ Uniform(0,1), and Z ~ N(0,1).
Left: standard deviation of Y| X = x against x. Center: a large sample of (X,Y) to describe
the shape of their joint distribution. Right: power functions of tests Pearson, Spearman,
Kendall, and distance covariance. Distance covariance test is the only one that shows
improvements in power for increasing sample size.

2 Discussion

e Recall that distance correlation is unsigned with values in [0, 1]. The main advantages
of this measure are: it is equal to zero if and only if the two considered random
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vectors of arbitrary dimensions are independent; it has a straightforward formula; its
sample version is easy to compute since it is based on distance matrices of the sample
points; the equivalence of distance covariance with Brownian covariance leads to some
useful intuitions about why a test of independence based on it can be used to detect
any kind of relationship. One disadvantage of the distance correlation, compared to
Pearson’s correlation, is that there is little interpretation to the value of the distance
correlation. One must simply ask if the distance correlation is significant or not; one
cannot interpret if the correlation comes from linear or non-linear interactions. On
the other hand, Pearson’s correlation gives a sense of the slope of the regressed line
between two variables. Thus, one may be able to garner more information about the
dependencies between two random vectors X and Y by first fitting a linear regression
model between X and Y, and then testing for independence between the residuals of
the fitted model. A significant dependence between the residuals would reveal that
the data have non-linear interactions that could not be captured by the linear model.

The Brownian covariance of two random vectors X € RP,'Y € R? is obtained by av-
eraging over all the possible realizations of two independent Wiener fields and with
respect to the joint distribution of (X,Y). Since a Wiener field has the property of
having continuous trajectories a.s., we can see the Brownian covariance as an approx-
imate average over all the possible continuous functions f : RP — R, g : R? —» R
evaluated at random points (X,Y). This intuition, combined with Theorem 1, can
help to understand why tests based on the distance covariance V(X,Y) can detect any
kind of relationship between X and Y. We can see also that averaging with respect
to Wiener processes is much easier than maximizing with respect to all the possible
functions, as it is instead required to compute the maximal correlation (Renyi 1951).

The distribution of the test statistic nV2 /Ty can be approximated via permutation
or via x? asymptotic approximation. As seen in the simulations, the first method
should be generally preferred since the probability of TYPE I error is well controlled,
while for the second method it might not, especially for not so large sample sizes.
However, for very large sample sizes, we expect that the computational time due to
permutations could make the use the X% approximation convenient. Yet, the behaviour
of the probability of TYPE I error for the x? approximation can vary not only with
respect to the sample size (i.e. as n — oo, this probability will be upper bounded by
the desired level of the test), but it can also be affected by the shapes of the marginal
distributions of the random vectors considered.

Because a particular weight function was chosen in which the distance covariance
arose, it is unclear if other weight functions could lead to similar dependency mea-
sures. In a recent paper, [7] made a connection between the distance covariance and
maximum mean discrepancies (MMD), which is based on assessing distances between
embedded distributions to reproducing kernel Hilbert spaces. The paper showed that
the distance covariance can be computed with a special kernel of a class of distance-
induced kernels. In fact, other parametric kernels exist that can yield more powerful
tests than the distance covariance. Another advantage to using kernels is that we are
no longer restricted to the Euclidean domain, and can test variables in applications
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such as text strings and graphs.
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